
Castor 1.3.3 - Reference documentation

1.3.3

Copyright © 2006-2008

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

1. Castor XML - XML data binding ... 1
1.1. XML framework .. 1

1.1.1. Introduction .. 1
1.1.2. Castor XML - The XML data binding framework .. 1
1.1.3. Sources and destinations .. 4
1.1.4. XMLContext - A consolidated way to bootstrap Castor .. 7
1.1.5. Using existing Classes/Objects ... 7
1.1.6. Class Descriptors ... 7

1.2. XML Mapping ... 8
1.2.1. Introduction .. 8
1.2.2. Overview .. 8
1.2.3. The Mapping File .. 10
1.2.4. Usage Pattern .. 23
1.2.5. xsi:type ... 27
1.2.6. Location attribute .. 28
1.2.7. Tips .. 29

1.3. Configuring Castor XML (Un)Marshaller .. 30
1.3.1. Introduction .. 30
1.3.2. Configuring the Marshaller .. 30
1.3.3. Configuring the Unmarshaller .. 30

1.4. Usage of Castor and XML parsers ... 31
1.4.1. SAX/DOM .. 31
1.4.2. StAX .. 31

1.5. XML configuration file ... 31
1.5.1. News .. 31
1.5.2. Introduction .. 32
1.5.3. Accessing the properties from within code .. 35

1.6. Castor XML - Tips & Tricks ... 36
1.6.1. Logging and Tracing ... 36
1.6.2. Indentation .. 36
1.6.3. XML:Marshal validation .. 36
1.6.4. NoClassDefFoundError ... 36
1.6.5. Mapping: auto-complete .. 37
1.6.6. Create method ... 37
1.6.7. MarshalListener and UnmarshalListener ... 38

1.7. Castor XML: Writing Custom FieldHandlers ... 38
1.7.1. Introduction .. 38
1.7.2. Writing a simple FieldHandler .. 39
1.7.3. Writing a GeneralizedFieldHandler .. 42
1.7.4. Use ConfigurableFieldHandler for more flexibility .. 43
1.7.5. Reuse a ConfigurableFieldHandler for more than one field definition 46
1.7.6. No Constructor, No Problem! ... 46
1.7.7. Collections and FieldHandlers .. 50

1.8. Best practice .. 50
1.8.1. General ... 51
1.8.2. Performance Considerations ... 51

1.9. Castor XML - HOW-TO's ... 54
1.9.1. Introduction .. 54
1.9.2. Documentation .. 54
1.9.3. Contribution .. 54
1.9.4. Mapping ... 54
1.9.5. Validation ... 55

Castor (1.3.3) ii

1.9.6. Source generation .. 55
1.9.7. Others ... 55

1.10. XML FAQ ... 55
1.10.1. General ... 56
1.10.2. Introspection ... 58
1.10.3. Mapping ... 59
1.10.4. Marshalling ... 59
1.10.5. Source code generation .. 60
1.10.6. Miscellaneous ... 61
1.10.7. Serialization .. 62

2. XML code generation .. 63
2.1. Why Castor XML code generator - Motivation ... 63
2.2. Introduction ... 63

2.2.1. News .. 63
2.2.2. Introduction .. 64
2.2.3. Invoking the XML code generator .. 64
2.2.4. XML Schema .. 64

2.3. Properties .. 64
2.3.1. Overview .. 64
2.3.2. Customization - Lookup mechanism ... 66
2.3.3. Detailed descriptions ... 66

2.4. Custom bindings .. 73
2.4.1. Binding File .. 73
2.4.2. Class generation conflicts ... 81

2.5. Invoking the XML code generator ... 84
2.5.1. Ant task definition ... 85
2.5.2. Maven 2 plugin ... 88
2.5.3. Command line ... 90

2.6. XML schema support ... 93
2.6.1. Supported XML Schema Built-in Datatypes .. 94
2.6.2. Supported XML Schema Structures .. 97

2.7. Examples ... 98
2.7.1. The invoice XML schema .. 98
2.7.2. Non-trivial real world example ... 105

3. Castor JDO ... 109
3.1. Castor JDO - An introduction .. 109

3.1.1. What is Castor JDO ... 109
3.1.2. Features .. 109

3.2. Castor JDO - First steps .. 111
3.2.1. Introduction .. 111
3.2.2. Sample domain objects .. 111
3.2.3. Using Castor JDO for the first time ... 112
3.2.4. JDO configuration ... 112

3.3. Using Castor JDO .. 112
3.3.1. Opening A JDO Database .. 112
3.3.2. Using A JDO Database to perform persistence operations 114
3.3.3. Using JDO And XML .. 118

3.4. Castor JDO - Configuration .. 118
3.4.1. The Castor configuration file .. 119
3.4.2. JDOConfFactory - A programmatic way of configuring Castor JDO 124
3.4.3. References .. 125

3.5. Type Support ... 126

Castor 1.3.3 - Reference documentation

Castor (1.3.3) iii

3.5.1. Types ... 126
3.5.2. The Field Mapping .. 127
3.5.3. SQL Dates and Default Timezones ... 128
3.5.4. SQL Type Conversion ... 128
3.5.5. Parameterized Type Convertors .. 130
3.5.6. BLOB and CLOB Types .. 131

3.6. Castor JDO Mapping .. 132
3.6.1. News .. 132
3.6.2. Introduction .. 133
3.6.3. The Mapping File .. 133

3.7. Castor JDO FAQ .. 139
3.7.1. Castor's relation to other specifications ... 139
3.7.2. XML related questions ... 140
3.7.3. Technical questions ... 141
3.7.4. Castor and performance caches .. 144
3.7.5. OQL ... 145
3.7.6. Features requests ... 146
3.7.7. Data model issues .. 147
3.7.8. Castor JDO design ... 148
3.7.9. Working with open source databases .. 149
3.7.10. RDBMS-specific issues ... 150
3.7.11. Castor & Logging .. 150
3.7.12. Lazy Loading related questions .. 151
3.7.13. Tuning for LOBs ... 154
3.7.14. Database-specific issues ... 154
3.7.15. Changing database configurations ... 154

3.8. Castor JDO code samples ... 154
3.8.1. Introduction .. 154

3.9. Castor JDO - How To's ... 161
3.9.1. Introduction .. 161
3.9.2. Documentation .. 161
3.9.3. Contribution .. 162
3.9.4. OQL ... 176
3.9.5. Core features ... 179
3.9.6. Cascading ... 182
3.9.7. Caches .. 194
3.9.8. Connection pooling ... 195
3.9.9. Use of Castor in J2EE applications ... 196
3.9.10. Database specifica ... 197

3.10. Castor JDO - Tips & Tricks .. 197
3.10.1. Logging and Tracing .. 198
3.10.2. Access Mode ... 198
3.10.3. Inheritence .. 198
3.10.4. Views of Same Object ... 199
3.10.5. Upgrading Locks ... 199
3.10.6. NoClassDefFoundError .. 199
3.10.7. Create method ... 199

3.11. Castor JDO - Advanced features .. 200
3.11.1. Introduction .. 200
3.11.2. Caching .. 200
3.11.3. Dependent and related relationships .. 200
3.11.4. Different cardinalities of relationship .. 201

Castor 1.3.3 - Reference documentation

Castor (1.3.3) iv

3.11.5. Lazy Loading .. 203
3.11.6. Multiple columns primary keys .. 204
3.11.7. Callback interface for persistent operations ... 204

3.12. Running the self-executable Castor JDO examples ... 205
3.12.1. Download the castor-$RELEASE-examples.zip archive 205
3.12.2. Unpack the ZIP file .. 205
3.12.3. Running the Castor JDO samples .. 205
3.12.4. What happens .. 206
3.12.5. Hints ... 206

4. Advanced JDO ... 207
4.1. Castor JDO - Caching ... 207

4.1.1. Introduction .. 207
4.1.2. Caching and long transactions .. 208
4.1.3. Configuration .. 208
4.1.4. fifo and lru cache providers .. 209
4.1.5. Caching and clustered environments ... 212
4.1.6. Custom cache provider .. 213
4.1.7. CacheManager - monitoring and clearing caches ... 215

4.2. OQL to SQL translator ... 216
4.2.1. News .. 216
4.2.2. Status ... 216
4.2.3. Introduction .. 216
4.2.4. Overview .. 216
4.2.5. Syntax .. 217
4.2.6. Type and validity checking .. 221
4.2.7. SQL Generation .. 224
4.2.8. OQL FAQ ... 226
4.2.9. Summary .. 226
4.2.10. Examples .. 228

4.3. Transaction And Locking Modes ... 229
4.3.1. The JDO Model ... 229
4.3.2. Locking Modes ... 230
4.3.3. Visibility of Changes ... 233

4.4. Castor Persistence Architecture ... 234
4.4.1. Layered Achitecture .. 234
4.4.2. Persistence API ... 234
4.4.3. Service Providers (SPI) .. 237
4.4.4. Enterprise JavaBeans CMP .. 238

4.5. Castor JDO Key Generator Support ... 238
4.5.1. Introduction .. 238
4.5.2. MAX key generator ... 240
4.5.3. HIGH-LOW key generator ... 240
4.5.4. UUID key generator .. 241
4.5.5. IDENTITY key generator .. 241
4.5.6. SEQUENCE key generator .. 241

4.6. Castor JDO Long Transactions Support ... 242
4.6.1. Introduction .. 243
4.6.2. Bounded dirty checking ... 243
4.6.3. Long transactions that do not depend on cache .. 244

4.7. Nested Attributes ... 245
4.7.1. Introduction .. 245
4.7.2. Application types .. 245

Castor 1.3.3 - Reference documentation

Castor (1.3.3) v

4.7.3. Compound types ... 246
4.8. Using Pooled Database Connections .. 247

4.8.1. News .. 247
4.8.2. Pooling Agents .. 247
4.8.3. Standard Database Connections .. 247
4.8.4. Pooling and JDBC DataSources ... 248
4.8.5. Configuring JDBC DataSources in Tomcat to be used with Castor 248
4.8.6. Jakarta Commons DBCP - BasicDataSource ... 250

4.9. Blobs in PostgreSQL .. 250
4.9.1. OID Support ... 250
4.9.2. OID Example .. 251

4.10. Castor JDO - Best practice .. 252
4.10.1. Introduction .. 252
4.10.2. General suggestions ... 252
4.10.3. Further optimization .. 255

5. Castor JDO - Integration with Spring ORM .. 257
5.1. Usage .. 257

5.1.1. Getting started using Maven 2 .. 257
5.1.2. Project dependencies ... 257

5.2. A high-level overview .. 257
5.2.1. Sample domain objects .. 257
5.2.2. Using Castor JDO manually ... 258
5.2.3. Using Castor JDO with Spring ORM - Without CastorTemplate 258
5.2.4. Using Castor JDO with Spring ORM - With CastorTemplate 259
5.2.5. Using Castor JDO with Spring ORM - With CastorDaoSupport 259

5.3. Data access through Castor JDO with the Spring framework ... 260
5.3.1. Resource management ... 260
5.3.2. JDOManager setup in a Spring container .. 261
5.3.3. The CastorTemplate .. 261
5.3.4. Implementing Spring-based DAOs without callbacks ... 262
5.3.5. Programmatic transaction demarcation .. 263
5.3.6. Declarative transaction demarcation ... 264
5.3.7. Transaction management strategies ... 265

5.4. Build instructions ... 267
5.4.1. Prerequisites ... 267
5.4.2. Building the Spring ORM module .. 267

6. Castor JDO - Support for the JPA specification ... 269
6.1. JPA annotations - Motivation .. 269
6.2. Prerequisites and outline ... 269
6.3. Limitations and Basic Information ... 269

6.3.1. persistence.xml .. 269
6.3.2. JPA access type and the placing of JPA annotations ... 270
6.3.3. Primary Keys .. 270
6.3.4. Inheritance, mapped superclasses, etc. .. 270
6.3.5. Relations ... 270

6.4. An outline of JPA-Annotations ... 270
6.5. Usage of JPA annotations - Configuration .. 273

6.5.1. HOW-TO persist a single class (@Entity, @Table, @Id) 273
6.5.2. HOW-TO persist a 1:1 relation (@OneToOne) .. 275
6.5.3. Persist one to many relation (@OnetoMany) ... 276
6.5.4. HOW-TO create and use a named query (@NamedQuery) 276
6.5.5. HOW-TO create and use multiple named queries (@NamedQueries) 277

Castor 1.3.3 - Reference documentation

Castor (1.3.3) vi

6.5.6. HOW-TO create and use a named native query (@NamedNativeQuery) 278
6.5.7. HOW-TO create and use multiple named native queries (@NamedNativeQueries) .. 279
6.5.8. HOW-TO use persistence callbacks .. 279
6.5.9. HOW-TO use @Enumerated .. 281
6.5.10. HOW-TO use @Temporal ... 282
6.5.11. HOW-TO use @Lob .. 283

6.6. Integration with Spring ORM for Castor JDO .. 283
6.6.1. A typical sample .. 284
6.6.2. Adding a JDOClassDescriptorResolver configuration .. 285
6.6.3. JPA Callbacks ... 285

6.7. Castor JPA Extensions .. 286
6.7.1. @Cache and @CacheProperty .. 286

7. DDL generator for Castor JDO .. 287
7.1. Castor DDL Generator - An Introduction ... 287

7.1.1. DDL Generator Options ... 287
7.1.2. Database Engines .. 288

7.2. Using the Ant task for the Castor DDL Generator ... 288
7.2.1. Configuration .. 288
7.2.2. Example ... 289

7.3. Castor DDL Generator - Type Mapping ... 289
7.3.1. JDBC Types not supported by Castor .. 291

7.4. Castor DDL Generator - Properties .. 291
7.4.1. Overview .. 291
7.4.2. Global properties ... 291
7.4.3. Specific properties ... 295

8. XML code generation - Extensions .. 297
8.1. XML code generation extensions - Motivation ... 297

8.1.1. JDO extensions for the Castor XML code generator ... 297
8.1.2. SOLRJ extensions for the Castor XML code generator .. 305

Castor 1.3.3 - Reference documentation

Castor (1.3.3) vii

Chapter 1. Castor XML - XML data binding

1.1. XML framework

1.1.1. Introduction

Castor XML is an XML data binding framework. Unlike the two main XML APIs, DOM (Document Object
Model) and SAX (Simple API for XML) which deal with the structure of an XML document, Castor enables
you to deal with the data defined in an XML document through an object model which represents that data.

Castor XML can marshal almost any "bean-like" Java Object to and from XML. In most cases the marshalling
framework uses a set of ClassDescriptors and FieldDescriptors to describe how an Object should be marshalled
and unmarshalled from XML.

For those not familiar with the terms "marshal" and "unmarshal", it's simply the act of converting a stream
(sequence of bytes) of data to and from an Object. The act of "marshalling" consists of converting an Object to
a stream, and "unmarshalling" from a stream to an Object.

1.1.2. Castor XML - The XML data binding framework

The XML data binding framework, as it's name implies, is responsible for doing the conversion between Java
and XML. The framework consists of two worker classes, org/exolab/castor/xml/Marshaller and
org.exolab.castor.xml.Unmarshaller respectively, and a bootstrap class
org.exolab.castor.xml.XMLContext used for configuration of the XML data binding framework and
instantiation of the two worker objects.

Lets walk through a very simple example. Assume we have a simple Person class as follows:

import java.util.Date;

/** An simple person class */
public class Person implements java.io.Serializable {

/** The name of the person */
private String name = null;

/** The Date of birth */
private Date dob = null;

/** Creates a Person with no name */
public Person() {

super();
}

/** Creates a Person with the given name */
public Person(String name) { this.name = name; }

/**
* @return date of birth of the person
*/

public Date getDateOfBirth() { return dob; }

/**
* @return name of the person
*/

public String getName() { return name; }

/**
* Sets the date of birth of the person
* @param name the name of the person

Castor (1.3.3) 1

*/
public void setDateOfBirth(Date dob) { this.dob = dob; }

/**
* Sets the name of the person
* @param name the name of the person
*/

public void setName(String name) { this.name = name; }
}

To (un-)marshal data to and from XML, Castor XML can be used in one of three modes:

• introspection mode

• mapping mode

• descriptor mode (aka generation mode)

The following sections discuss each of these modes at a high level.

1.1.2.1. Introspection mode

The introspection mode is the simplest mode to use from a user perspective, as it does not require any
configuration from the user. As such, the user does not have to provide any mapping file(s), nor point Castor to
any generated descriptor classes (as discussed in the 'descriptor mode' section).

In this mode, the user makes use of static methods on the org.exolab.castor.xml.Marshaller and
org.exolab.castor.xml.Unmarshaller classes, providing all required data as parameters on these method
calls.

To marshal an instance of the person class you simply call the org.exolab.castor.xml.Marshaller as
follows:

// Create a new Person
Person person = new Person("Ryan 'Mad Dog' Madden");
person.setDateOfBirth(new Date(1955, 8, 15));

// Create a File to marshal to
writer = new FileWriter("test.xml");

// Marshal the person object
Marshaller.marshal(person, writer);

This produces the XML shown in Example 1.1, “XML produced in introspection mode”

Example 1.1. XML produced in introspection mode

XML to written

To unmarshal an instance of the person class from XML, you simply call the
org.exolab.castor.xml.Unmarshaller as follows:

// Create a Reader to the file to unmarshal from

Castor XML - XML data binding

Castor (1.3.3) 2

reader = new FileReader("test.xml");

// Marshal the person object
Person person = (Person)
Unmarshaller.unmarshal(Person.class, reader);

Marshalling and unmarshalling is basically that simple.

Note
Note: The above example uses the static methods of the marshalling framework, and as such no
Marshaller and/or Unmarshaller instances need to be created. A common mistake in this context
when using a mapping file is to call the org.exolab.castor.xml.Marshaller or
org.exolab.castor.xml.Unmarshaller as in the above example. This won't work, as the mapping
will be ignored.

In introspection mode , Castor XML uses Java reflection to establish the binding between the Java classes (and
their properties) and the XML, following a set of (default) naming rules. Whilst it is possible to change to a
different set of naming rules, there's no way to override this (default) naming for individual artifacts. In such a
case, a mapping file should be used.

1.1.2.2. Mapping mode

In mapping mode , the user provides Castor XML with a user-defined mapping (in form of a mapping file) that
allows the (partial) definition of a customized mapping between Java classes (and their properties) and XML.

When you are using a mapping file, create an instance of the org.exolab.castor.xml.XMLContext class and
use the org.exolab.castor.xml.XMLContext.addMapping(Mapping) method to provide Castor XML with one
of more mapping files.

To start using Castor XML for marshalling and/or unmarshalling based upon your custom mapping, create
instances of org.exolab.castor.xml.Marshaller and org.exolab.castor.xml.Unmarshalleras needed
using one of the following methods:

Table 1.1. Methods on XMLContext to create Un-/Marshaller objects

Method name Description

createMarshaller Creates a Marshaller instance.

createUnmarshaller Creates a Unmarshaller instance.

and call any of the non-static (un)marshal methods to trigger data binding in either way.

Below code shows a full example that demonstrates unmarshalling a Person instance from XML using a
org.exolab.castor.xml.Unmarshaller instance as obtained from an XMLContext previously configured to
your needs.

Example 1.2. Unmarshalling from XML using a mapping

import org.exolab.castor.xml.XMLContext; import

Castor XML - XML data binding

Castor (1.3.3) 3

org.exolab.castor.xml.XMLContext
org.exolab.castor.xml.Marshaller
org.exolab.castor.xml.XMLContext
org.exolab.castor.xml.Unmarshaller

org.exolab.castor.mapping.Mapping; import
org.exolab.castor.xml.Unmarshaller;

// Load Mapping
Mapping mapping = new Mapping();
mapping.loadMapping("mapping.xml");

// initialize and configure XMLContext

XMLContext context = new XMLContext();
context.addMapping(mapping);

// Create a Reader to the file to unmarshal from

reader = new FileReader("test.xml");

// Create a new Unmarshaller
Unmarshaller unmarshaller =
context.createUnmarshaller();
unmarshaller.setClass(Person.class);

// Unmarshal the person object
Person person = (Person)
unmarshaller.unmarshal(reader);

To marshal the very same Person instance to XML using a org.exolab.castor.xml.Marshaller obtained
from the same org.exolab.castor.xml.XMLContext, use code as follows:

Example 1.3. Marshalling to XML using a mapping

import org.exolab.castor.xml.Marshaller;

// create a Writer to the file to marshal to
Writer writer = new FileWriter("out.xml");

// create a new Marshaller
Marshaller marshaller = context.createMarshaller();
marshaller.setWriter(writer);

// marshal the person object
marshaller.marshal(person);

Please have a look at XML Mapping for a detailed discussion of the mapping file and its structure.

For more information on how to effectively deal with loading mapping file(s) especially in multi-threaded
environments, please check the best practice section.

1.1.2.3. Descriptor mode

TBD

1.1.3. Sources and destinations

Castor supports multiple sources and destinations from which objects can be marshalled and unmarshalled.

Table 1.2. Marshalling destinations.

Castor XML - XML data binding

Castor (1.3.3) 4

http://www.castor.org/xml-mapping.html
http://www.castor.org/xml-best-practice.html

Destination Description

marshal(java.io.Writer) The character stream.

marshal(org.xml.sax.DocumentHandler) The SAX document handler.

marshal(org.xml.sax.ContentHandler) The SAX content handler.

marshal(org.w3c.dom.Node) The DOM node to marshall object into.

marshal(javax.xml.stream.XMLStreamWriter) The STaX cursor API.

marshal(javax.xml.stream.XMLEventWriter) The STaX iterator API.

marshal(javax.xml.transform.Result) javax.xml.transform.dom.DOMResult,
javax.xml.transform.sax.SAXResult and

javax.xml.transform.stream.StreamResult are
supported.

Table 1.3. Unmarshalling sources.

Source Description

unmarshal(java.io.Reader) A character stream.

unmarshal(org.xml.sax.InputSource) A SAX input source.

unmarshal(org.w3c.dom.Node) A W3C DOM node which will be used for
unmarshalling.

unmarshal(javax.xml.stream.XMLStreamReader) A StAX cursor.

unmarshal(javax.xml.stream.XMLEventReader) A StAX iterator.

unmarshal(javax.xml.transform.Source) Supports javax.xml.transform.dom.DOMSource,
javax.xml.transform.sax.SAXSource and

javax.xml.transform.stream.StreamSource.

Castor 1.3.2 and 1.3.3 introduced support for the STaX API for both for marshalling and unmarshalling. The
framework fully supports the STaX cursor and iterator API.

An example of marshalling using STaX:

Example 1.4. Marshalling to a StAX java.xml.stream.XMLStreamWriter

Castor XML - XML data binding

Castor (1.3.3) 5

// marshalling using STaX
StringWriter writer = new StringWriter();
XMLOutputFactory outputFactory = XMLOutputFactory.newInstance();
XMLStreamWriter xmlStreamWriter = outputFactory.createXMLStreamWriter(writer);

marshaller.setXmlStreamWriter(xmlStreamWriter);
marshaller.marshal(object);

Also beginning from version 1.3.3, the framework has been modified to support Source and Result interfaces.
Now it is possible to use SAXSource, DOMSource and StreamSource for unmarshalling and corresponding
classes for marshalling.

Below an example of marshalling into Result:

Example 1.5. Marshalling to a javax.xml.transform.dom.DOMResult

// instance of object to be marshalled
Object obj = ...

// marshalling into DOM node
XMLContext xmlContext = ... // creates the xml context

// creates marshaller
Marshaller marshaller = xmlContext.createMarshaller();

// creates DOM factory
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

// creates document
Document document = builder.newDocument();

// sets the DOM result for the marshaller
marshaller.setResult(new DOMResult(document));

// marshalls object
marshaller.marshall(obj);

Another example of unmarshalling from Source:

Example 1.6. Unmarshalling from a javax.xml.transform.sax.SAXSource

// unmarshalling from SAX InputSource
XMLContext xmlContext = ... // creates the xml context

// creates unmarshaller
Unmarshaller unmarshaller = xmlContext.createUnmarshaller();

// creates SAX input source
InputSource inputSource = new InputSource(new StringReader(xml));

// creates instance of SAXSource
SAXSource saxSource = new SAXSource(inputSource);

// unmarshalls object
Object result = unmarshaller.unmarshal(saxSource);

Castor XML - XML data binding

Castor (1.3.3) 6

1.1.4. XMLContext - A consolidated way to bootstrap Castor

With Castor 1.1.2, the org.exolab.castor.xml.XMLContext class has been added to the Castor marshalling
framework. This new class provides a bootstrap mechanism for Castor XML, and allows easy (and efficient)
instantiation of org.exolab.castor.xml.Marshaller and org.exolab.castor.xml.Unmarshaller instances
as needed.

As shown above, the org.exolab.castor.xml.XMLContext class offers various factory methods to obtain a
new org.exolab.castor.xml.Marshaller, org.exolab.castor.xml.Unmarshaller.

When you need more than one org.exolab.castor.xml.Unmarshaller instance in your application, please
call org.exolab.castor.xml.XMLContext.createUnmarshaller() as required. As all Unmarshaller instances
are created from the very same XMLContext instance, overhead will be minimal. Please note, though, that use of
one Unmarshaller instance is not thread-safe.

1.1.5. Using existing Classes/Objects

Castor can marshal "almost" any arbitrary Object to and from XML. When descriptors are not available for a
specfic Class, the marshalling framework uses reflection to gain information about the object.

Note
Actually an in memory set of descriptors are created for the object and we will soon have a way for
saving these descriptors as Java source, so that they may be modified and compiled with little
effort.

If a set of descriptors exist for the classes, then Castor will use those to gain information about how to handle
the marshalling. See Section 1.1.6, “Class Descriptors” for more information.

There is one main restrictions to marshalling objects. These classes must have have a public default constructor
(ie. a constructor with no arguments) and adequete "getter" and "setter" methods to be properly be marshalled
and unmarshalled.

The example illustrated in the previous section Section 1.1.2, “Castor XML - The XML data binding
framework” demonstrates how to use the framework with existing classes.

1.1.6. Class Descriptors

Class descriptors provide the "Castor Framework" with necessary information so that the Class can be
marshalled properly. The class descriptors can be shared between the JDO and XML frameworks.

Class descriptors contain a set of ???

XML Class descriptors provide the marshalling framework with the information it needs about a class in order
to be marshalled to and from XML. The XMLClassDescriptor org.exolab.castor.xml.XMLClassDescriptor.

XML Class Descriptors are created in four main ways. Two of these are basically run-time, and the other two
are compile time.

1. Compile-Time Descriptors

To use "compile-time" class descriptors, one can either implement the
org.exolab.castor.xml.XMLClassDescriptor interface for each class which needs to be "described", or have

Castor XML - XML data binding

Castor (1.3.3) 7

the Source Code Generator create the proper descriptors.

The main advantage of compile-time descriptors is that they are faster than the run-time approach.

2. Run-Time Descriptors

To use "run-time" class descriptors, one can either simply let Castor introspect the classes, a mapping file can
be provided, or a combination of both "default introspection" and a specified mapping file may be used.

For "default introspection" to work the class being introspected must have adequete setter/getter methods for
each field of the class that should be marshalled and unmarshalled. If no getter/setter methods exist, Castor can
handle direct field access to public fields. It does not do both at the same time. So if the respective class has any
getter/setter methods at all, then no direct field access will take place.

There is nothing to do to enable "default introspection". If a descriptor cannot be found for a class,
introspection occurs automatically.

Some behavior of the introspector may be controlled by setting the appropriate properties in the
castor.properties file. Such behavior consists of changing the naming conventions, and whether primitive types
are treated as attributes or elements. See castor.properties file for more information.

A mapping file may also be used to "describe" the classes which are to be marshalled. The mapping is loaded
before any marshalling/unmarshalling takes place. See org.exolab.castor.mapping.Mapping

The main advantage of run-time descriptors is that it takes very little effort to get something working.

1.2. XML Mapping

1.2.1. Introduction

Castor XML mapping is a way to simplify the binding of java classes to XML document. It allows to transform
the data contained in a java object model into/from an XML document.

Although it is possible to rely on Castor's default behavior to marshal and unmarshal Java objects into an XML
document, it might be necessary to have more control over this behavior. For example, if a Java object model
already exists, Castor XML Mapping can be used as a bridge between the XML document and that Java object
model.

Castor allows one to specify some of its marshalling/unmarshalling behavior using a mapping file. This file
gives explicit information to Castor on how a given XML document and a given set of Java objects relate to
each other.

A Castor mapping file is a good way to dissociate the changes in the structure of a Java object model from the
changes in the corresponding XML document format.

1.2.2. Overview

The mapping information is specified by an XML document. This document is written from the point of view
of the Java object and describes how the properties of the object have to be translated into XML. One constraint
for the mapping file is that Castor should be able to infer unambiguously from it how a given XML
element/attribute has to be translated into the object model during unmarshalling.

The mapping file describes for each object how each of its fields have to be mapped into XML. A field is an

Castor XML - XML data binding

Castor (1.3.3) 8

http://www.castor.org/sourcegen.xml

abstraction for a property of an object. It can correspond directly to a public class variable or indirectly to a
property via some accessor methods (setters and getters).

It is possible to use the mapping and Castor default behavior in conjunction: when Castor has to handle an
object or an XML data but can't find information about it in the mapping file, it will rely on its default behavior.
Castor will use the Java Reflection API to introspect the Java objects to determine what to do.

Note: Castor can't handle all possible mappings. In some complex cases, it may be necessary to rely on an XSL
transformation in conjunction with Castor to adapt the XML document to a more friendly format.

1.2.2.1. Marshalling Behavior

For Castor, a Java class has to map into an XML element. When Castor marshals an object, it will:

• use the mapping information, if any, to find the name of the element to create

or

• by default, create a name using the name of the class

It will then use the fields information from the mapping file to determine how a given property of the object has
to be translated into one and only one of the following:

• an attribute

• an element

• text content

• nothing, as we can choose to ignore a particular field

This process will be recursive: if Castor finds a property that has a class type specified elsewhere in the
mapping file, it will use this information to marshal the object.

By default, if Castor finds no information for a given class in the mapping file, it will introspect the class and
apply a set of default rules to guess the fields and marshal them. The default rules are as follows:

• All primitive types, including the primitive type wrappers (Boolean, Short, etc...) are marshalled as
attributes.

• All other objects are marshalled as elements with either text content or element content.

1.2.2.2. Unmarshalling Behavior

When Castor finds an element while unmarshalling a document, it will try to use the mapping information to
determine which object to instantiate. If no mapping information is present, Castor will use the name of the
element to try to guess the name of a class to instantiate (for example, for an element named 'test-element',
Castor will try to instantiate a class named 'TestElement' if no information is given in the mapping file). Castor
will then use the field information of the mapping file to handle the content of the element.

If the class is not described in the mapping file, Castor will instrospect the class using the Java Reflection API
to determine if there is any function of the form getXxxYyy()/setXxxYyy(<type> x). This accessor will be

Castor XML - XML data binding

Castor (1.3.3) 9

associated with XML element/attribute named 'xxx-yyy'. In the future, we will provide a way to override this
default behavior.

Castor will introspect object variables and use direct access _only_ if no get/set methods have been found in the
class. In this case, Castor will look for public variables of the form:

public <type> xxxYYY;

and expect an element/attribute named 'xxx-yyy'. The only handled collections for <type> are java.lang.Vector
and array. (up to version 0.8.10)

For primitive <type>, Castor will look for an attribute first and then an element. If <type> is not a primitive
type, Castor will look for an element first and then an attribute.

1.2.3. The Mapping File

The following sections define the syntax for each of the mapping file artefacts and their semantical meaning.

1.2.3.1. Sample domain objects

This section defines a small domain model that will be referenced by various mapping file (fragments/samples)
in the following sections. The model consists of two two classes Order and OrderItem, where an order holds a
list of order items.

public class Order {

private List orderItems;
private String orderNumber;

public List getOrderItems() {
return orderItems;

}
public void setOrderItems(List orderItems) {

this.orderItems = orderItems;
}
public String getOrderNumber() {

return orderNumber;
}
public void setOrderNumber(String orderNumber) {

this.orderNumber = orderNumber;
}

}

public class OrderItem {

private String id;
private Integer orderQuantity;

public String getId() {
return id;

}
public void setId(String id) {

this.id = id;
}
public Integer getOrderQuantity() {

return orderQuantity;
}
public void setOrderQuantity(Integer orderQuantity) {

this.orderQuantity = orderQuantity;
}

}

Castor XML - XML data binding

Castor (1.3.3) 10

As shown above in bold, the Order instance has a (private) field 'orderItems' to hold a collection of
OrderItem instances. This field is publically exposed by corresponding getter and setter methods.

1.2.3.2. The <mapping> element

<!ELEMENT mapping (description?, include*, field-handler*, class*, key-generator*)>

The <mapping> element is the root element of a mapping file. It contains:

• an optional description

• zero or more <include> which facilitates reusing mapping files

• zero of more <field-handler> defining custom, configurable field handlers

• zero or more <class> descriptions: one for each class we intend to give mapping information

• zero or more <key-generator>: not used for XML mapping

A mapping file look like this:

<?xml version="1.0"?>

<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"
castor.org

"http://castor.org/mapping.dtd">

<mapping>
<description>Description of the mapping</description>

<include href="other_mapping_file.xml"/>

<!-- mapping for class 'A' -->
<class name="A">

.........
</class>

<!-- mapping for class 'B' -->
<class name="B">

.........
</class>

</mapping>

1.2.3.3. The <class> element

<!ELEMENT class (description?, cache-type?, map-to?, field+)>
<!ATTLIST class

name ID #REQUIRED
extends IDREF #IMPLIED
depends IDREF #IMPLIED
auto-complete (true |false) "false"
identity CDATA #IMPLIED
access (read-only | shared | exclusive | db-locked) "shared"
key-generator IDREF #IMPLIED >

The <class> element contains all the information used to map a Java class into an XML document. The content
of <class> is mainly used to describe the fields that will be mapped.

Castor XML - XML data binding

Castor (1.3.3) 11

Table 1.4. Description of the attributes

Name Description

name The fuly-qualified name of the Java class that we
want to map to.

extends The fully qualified name of a parent class. This
attribute should be used only if this class extends
another class for which a class mapping is provided.
It should not be used if there's no class maping for
the extended class.

depends Used with Castor JDO only; for more information on
this field, please see the JDO documentation.

auto-complete If true, the class will be introspected to determine its
field and the fields specified in the mapping file will
be used to overide the fields found during the
introspection.

identity Used with Castor JDO only; for more information on
this field, please see see the JDO documentation.

access Used with Castor JDO only; for more information on
this field, please see see the JDO documentation.

key-generator Used with Castor JDO only; for more information on
this field, please see see the JDO documentation.

The auto-complete attributes is interesting as it allow a fine degree of control of the introspector: it is possible
to specifiy only the fields whose Castor default behavior does not suite our needs. These feature should
simplify the handling of complexe class containing many fields. Please see below for an example usage of this
attribute.

Table 1.5. Description of the content

Name Description

description An optional description.

cache-type Used with Castor JDO only; for more information on
this field, please see see the JDO documentation.

map-to Used if the name of the element is not the name of the
class. By default, Castor will infer the name of the
element to be mapped from the name of the class: a
Java class named 'XxxYyy' will be transformed in
'xxx-yyy'. If you don't want Castor to generate the
name, you need to use <map-to> to specify the name
you want to use. <map-to> is only used for the root
element.

field Zero or more <field> elements, which are used to
describe the properties of the Java class being

Castor XML - XML data binding

Castor (1.3.3) 12

http://www.castor.org/jdo-mapping.html
http://www.castor.org/jdo-mapping.html
http://www.castor.org/jdo-mapping.html
http://www.castor.org/jdo-mapping.html
http://www.castor.org/jdo-mapping.html

Name Description

mapped.

1.2.3.3.1. Sample <class> mappings

The following mapping fragment defines a class mapping for the OrderItem class:

<class name="mypackage.OrderItem>

<map-to xml="item"/>

<field name="id" type="string">
<bind-xml name="identity" node="attribute"/>

</field>

</field name="orderQuantity" type="integer">
<bind-xml name="quantity" node="element"/>

</field>

</class>

When marshalling an OrderItem instance, this yields the following XML:

<?xml version="1.0" ?>
<item identity="12">

<quantity>100</quantity>
</item>

The following mapping fragment defines a class mapping for the same class, where for all properties but id
introspection should be used; the use of the auto-complete attribute instructs Castor XML to use introspection
for all attributes other than 'id', where the given field mapping will be used.

<class name="mypackage.OrderItem auto-complete="true">

<map-to xml="item"/>

<field name="id" type="string">
<bind-xml name="identity" node="attribute"/>

</field>

</class>

When marshalling the very same OrderItem instance, this yields the following XML:

<?xml version="1.0" ?>
<item identity="12">

<order-quantity>100</order-quantity>
</item>

By removing the <map-to> element from above class mapping, ...

<class name="mypackage.OrderItem auto-complete="true">

<field name="id" type="string">
<bind-xml name="identity" node="attribute"/>

</field>

</class>

Castor XML - XML data binding

Castor (1.3.3) 13

... Castor will use introspection to infer the element name from the Java class name (OrderItem), applying a
default naming convention scheme.

When marshalling the very same OrderItem instance, this yields the following XML:

<?xml version="1.0" ?>
<order-item identity="12">

<order-quantity>100</order-quantity>
</order-item>

1.2.3.4. The <map-to> element

<!ELEMENT map-to EMPTY>
<!ATTLIST map-to

table NMTOKEN #IMPLIED
xml NMTOKEN #IMPLIED
ns-uri NMTOKEN #IMPLIED
ns-prefix NMTOKEN #IMPLIED
ldap-dn NMTOKEN #IMPLIED
element-definition (true|false) "false" NEW as of 1.0M3
ldap-oc NMTOKEN #IMPLIED>

<map-to> is used to specify the name of the element that should be associated with the given class. <map-to> is
only used for the root class. If this information is not present, Castor will:

• for marshalling, infer the name of the element to be mapped from the name of the class: a Java class named
'XxxYyy' will be transformed into 'xxx-yyy'.

• for unmarshalling, infer the name of the class from the name of the element: for an element named
'test-element' Castor will try to use a class named 'TestElement'

Please note that it is possible to change the naming scheme used by Castor to translate between the XML name
and the Java class name in the castor.properties file.

Table 1.6. Description of attributes

xml Name of the element that the class is associated to.

ns-uri Namespace URI

ns-prefix Desired namespace

element-definition True if the descriptor as created from a schema
definition that was of type element (as opposed to a
<complexType> definition). This only is useful in the
context of source code generation.

ldap-dn Not used for Castor XML

ldap-oc Not used for Castor XML

1.2.3.4.1. <map-to> samples

The following mapping fragment defines a <map-to element for the OrderItem class, manually setting the
element name to a value of 'item'.

Castor XML - XML data binding

Castor (1.3.3) 14

<class name="myPackage.OrderItem">
...
<map-to xml="item" />
...

</class>

The following mapping fragment instructs Castor to assign a namespace URI of
http://castor.org/sample/mapping/ to the <item> element, and use a namespace prefix of 'castor' during
un-/marshalling.

<class name="myPackage.OrderItem">
...
<map-to xml="item" ns-uri="http://castor.org/sample/mapping/"

ns-prefix="castor"/>
...

</class>

When marshalling an OrderItem instance, this will yield the following XML:

<?xml version="1.0" ?>
<castor:order-item xmlns:castor="http://castor.org/sample/mapping/" identity="12">

<castor:order-quantity>100</castor:order-quantity>
</castor:order-item>

1.2.3.5. The <field> element

<!ELEMENT field (description?, sql?, bind-xml?, ldap?)>
<!ATTLIST field

name NMTOKEN #REQUIRED
type NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (true | false) "false"
direct (true | false) "false"
lazy (true | false) "false"
transient (true | false) "false"
nillable (true | false) "false"
container (true | false) "false"
get-method NMTOKEN #IMPLIED
set-method NMTOKEN #IMPLIED
create-method NMTOKEN #IMPLIED
collection (array | vector | hashtable | collection | set | map) #IMPLIED>

<field> is used to describe a property of a Java object we want to marshal/unmarshal. It gives:

• its identity ('name')

• its type (infered from 'type' and 'collection')

• its access method (infered from 'direct', 'get-method', 'set-method')

From this information, Castor is able to access a given property in the Java class.

In order to determine the signature that Castor expects, there are two easy rules to apply.

1. Determine <type>.

Castor XML - XML data binding

Castor (1.3.3) 15

• If there is no 'collection' attribute, the <type> is just the Java type specified in <type_attribute> (the value
of the 'type' attribute in the XML document). The value of <type_attribute> can be a fully qualified Java
object like 'java.lang.String' or one of the allowed short name:

Table 1.7. Type shortnames

short name Primitive type? Java Class

other N java.lang.Object

string N java.lang.String

integer Y java.lang.Integer.TYPE

long Y java.lang.Long.TYPE

boolean Y java.lang.Boolean.TYPE

double Y java.lang.Double.TYPE

float Y java.lang.Float.TYPE

big-decimal N java.math.BigDecimal

byte Y java.lang.Byte.TYPE

date N java.util.Date

short Y java.lang.Short.TYPE

char Y java.lang.Character.TYPE

bytes N byte[]

chars N char[]

strings N String[]

locale N java.util.Locale

Castor will try to cast the data in the XML file in the proper Java type.

• If there is a collection attribute , you can use the following table:

Table 1.8. Type implementations

name <type> default implementation

array <type_attribute>[] <type_attribute>[]

arraylist java.util.List java.util.Arraylist

vector java.util.Vector java.util.Vector

hashtable java.util.Hashtable java.util.Hashtable

collection java.util.Collection java.util.Arraylist

set java.util.Set java.util.Hashset

map java.util.Map java.util.Hashmap

Castor XML - XML data binding

Castor (1.3.3) 16

name <type> default implementation

sortedset java.util.SortedSet java.util.TreeSet

The type of the object inside the collection is <type_attribute>. The 'default implementation' is the type used
if the object holding the collection is found to be null and need to be instantiated.

For hashtable and maps (since 0.9.5.3), Castor will save both key and values. When marshalling output
<key> and <value> elements. These names can be controlled by using a top-level or nested class mapping
for the org.exolab.castor.mapping.MapItem class.

Note: for backward compatibility with prior versions of Castor, the saveMapKeys property can be set to false
in the castor.properties file.

For versions prior to 0.9.5.3, hashtable and maps, Castor will save only the value during marshalling and
during unmarshalling will add a map entry using the object as both the key and value, e.g. map.put(object,
object).

It is necessary to use a collection when the content model of the element expects more than one element of the
specified type.

Determine the signature of the function

• If 'direct' is set to true, Castor expects to find a class variable with the given signature:

public <type> <name>;

• If 'direct' is set to false or omitted, Castor will access the property though accessor methods. Castor
determines the signature of the accessors as follow: If the 'get-method' or 'set-method' attributes are supplied,
it will try to find a function with the following signature:

public <type> <get-method>();

or

public void <set-method>(<type> value);

If 'get-method' and 'set-method' attributes are not provided, Castor will try to find the following function:

public <type> get<capitalized-name>();

or

public void set<capitalized-name>(<type> value);

Castor XML - XML data binding

Castor (1.3.3) 17

<capitalized-name> means that Castor takes the <name> attribute and put its first letter in uppercase without
modifying the other letters.

The content of <field> will contain the information on how to map this given field to SQL, XML, ...

• Exceptions concerning collection fields:

The default is to treat the 'get-method' as a simple getter returning the collection field, and the 'set-method' as
a simple getter used to set a new instance on the collection field.

Table 1.9. Collection field access

Parameter Description

'get-method'
If a 'get-method' is provided for a collection field,
Castor - in adition to the default behaviour described
above - will deviate from the standard case for the
following special prefixes:

public Iterator iterate...();

A 'get-method' starting with the prefix ' iterate ' is
treated as Iterator method for the given collection
field.

public Enumeration enum...();

A 'get-method' starting with ' enum ' is treated as
Enumeration method for the given collection field.

'set-method'
If 'set-method' is provided for a collection field,
Castor - in addition to the default behaviour described
above - will accept an 'add' prefix and expect the
following signature:

public void add...(<type> value);

This method is called for each collection element
while unmarshalling.

Table 1.10. Description of the attributes

Name Description

name The field 'name' is required even if no such field
exists in the class. If 'direct' access is used, 'name'

Castor XML - XML data binding

Castor (1.3.3) 18

Name Description

should be the name of a public instance member in
the object to be mapped (the field must be public, not
static and not transient). If no direct access and no
'get-/set-method' is specified, this name will be used
to infer the name of the accessors methods.

type The Java type of the field. It is used to access the
field. Castor will use this information to cast the
XML information (like string into integer). It is also
used to define the signature of the accessor methods.
If a collection is specified, this is used to specify the
type of the objects held by the collection. See
description above for more details.

required A field can be optional or required.

nillable A field can be of content 'nil'.

transient If true, this field will be ignored during the
marshalling. This is usefull when used together with
the auto-complete="true" option.

direct If true, Castor will expect a public variable in the
containing class and will access it directly (for both
reading and writing).

container Indicates whether the field should be treated as a
container, i.e. only it's fields should be persisted, but
not the containing class itself. In this case, the
container attribute should be set to true (supported in
Castor XML only).

collection If a parent expects more than one occurrence of one
of its element, it is necessary to specify which
collection Castor will use to handle them. The type
specified is used to define the type of the content
inside the collection.

get-method Optional name of the 'get method' Castor should use.
If this attribute is not set and the set-method attribute
is not set, then Castor will try to infer the name of this
method with the algorithm described above.

set-method Optional name of the 'set method' Castor should use.
If this attribute is not set and the get-method attribute
is not set, then Castor will try to infer the name of this
method with the algorithm described above.

create-method Optionally defines a factory method for the
instantiation of a FieldHandler

handler If present, specifies one of the following:

• The fully-qualified class name of a custom field
handler implementation, or

Castor XML - XML data binding

Castor (1.3.3) 19

Name Description

• The (short) name of a configurable field handler
definition.

1.2.3.6. Description of the content

In the case of XML mapping, the content of a field element should be one and only one <bind-xml> element
describing how this given field will be mapped into the XML document.

1.2.3.6.1. Mapping constructor arguments (since 0.9.5)

Starting with release 0.9.5, for attribute mapped fields, support has been added to map a constructor field using
the set-method attribute.

To specify that a field (mapped to an attribute) should be used as a constructor argument during object
initialization, please specify a set-method attribute on the <field> mapping and use "%X" as the value of the
set-method attribute, where X is a positive integer number, e.g. %1 or %21.

For example:

<field name="foo" set-method="%1" get-method="getFoo" type="string">
<bind-xml node="attribute"/>

</field>

Note that because the set-method is specified, the get-method also must be specified.

Tip: the XML HOW-TO section has a HOW-TO document for mapping constructor arguments, incl. a fully
working mapping.

1.2.3.6.2. Sample 1: Defining a custom field handler

The following mapping fragment defines a <field> element for the member property of the
org.some.package.Root class, specifying a custom org.exolab.castor.mapping.FieldHandler

implementation.

<class name="org.some.package.Root">
<field name="member" type="string" handler="org.some.package.CustomFieldHandlerImpl"/>

</class>

1.2.3.6.3. Sample 2: Defining a custom configurable field handler

The same custom field handler as in the previous sample can be defined with a separate configurable
<field-handler> definition, where additional configuration can be provided.

<field-handler name="myHandler" class="org.some.package.CustomFieldHandlerImpl">
<param name="date-format" value="yyyyMMddHHmmss"/>

</field-handler>

and subsequently be referred to by its name as shown in the following field mapping:

<class name="org.some.package.Root">

Castor XML - XML data binding

Castor (1.3.3) 20

http://www.castor.org/xml-fieldhandlers.html#Use-ConfigurableFieldHandler-for-more-flexibility

<field name="member" type="string" handler="myHandler"/>
</class>

1.2.3.6.4. Sample 3: Using the container attribute

Assume you have a class mapping for a class Order which defines - amongst others - a field mapping as
follows, where the field item refers to an instance of a class Item.

<class name="some.example.Order">

...
<field name="item" type="some.example.Item" >

<bind-xml> name="item" node="element" />
</field>
...

</class>

<class name="some.example.Item">
<field name="id" type="long" />
<field name="description" type="string" />

</class>

Marshalling an instance of Order would produce XML as follows:

<order>
...
<item>

<id>100</id>
<description>...</description>

</item>
</order>

If you do not want the Item instance to be marshalled, but only its fields, change the field mapping for the item

member to be as follows:

<field name="item" type="some.example.Item" container="false" >
<bind-xml> name="item" node="element" />

</field>

The resulting XML would look as follows:

<order>
...
<id>100</id>
<description>...</description>

</order>

1.2.3.7. The <bind-xml> element

1.2.3.7.1. Grammar

<!ELEMENT bind-xml (class?, property*)>
<!ATTLIST bind-xml

name NMTOKEN #IMPLIED
type NMTOKEN #IMPLIED
location CDATA #IMPLIED
matches NMTOKENS #IMPLIED
QName-prefix NMTOKEN #IMPLIED
reference (true | false) "false"

Castor XML - XML data binding

Castor (1.3.3) 21

node (attribute | element | text) #IMPLIED
auto-naming (deriveByClass | deriveByField) #IMPLIED
transient (true | false) "false">

1.2.3.7.1.1. Definiton

The <bind-xml> element is used to describe how a given Java field should appear in an XML document. It is
used both for marshalling and unmarshalling.

Table 1.11. Description of the attributes

name The name of the element or attribute.

Note

The name is a QName, and a namespace
prefix may be used to indicate the
element or attribute belongs to a certain
namespace. Note the prefix is not
preserved or used during marshalling, it's
simply used for qualification of which
namespace the element or attribute
belongs.

auto-naming If no name is specified, this attribute controls how
castor will automatically create a name for the field.
Normally, the name is created using the field name,
however many times it is necessary to create the
name by using the class type instead (such as
heterogenenous collections).

type XML Schema type (of the value of this field) that
requires specific handling in the Castor Marshalling
Framework (such as 'QName' for instance).

location (since 0.9.4.4) Allows the user to specify the "sub-path" for which
the value should be marshalled to and from. This is
useful for "wrapping" values in elements or for
mapping values that appear on sub-elements to the
current "element" represented by the class mapping.
For more information, see the Location attribute
below.

QName-prefix When the field represents a QName value, a prefix
can be provided that is used when marshalling value
of type QName. More information on the use of
'QName-prefix' can be found in the SourceGenerator
Documentation

reference Indicates if this field has to be treated as a reference
by the unmarshaller. In order to work properly, you
must specify the node type to 'attribute' for both the
'id' and the 'reference'. In newer versions of Castor,
'element' node for reference is allowed. Remember to

Castor XML - XML data binding

Castor (1.3.3) 22

make sure that an identity field is specified on the
<class> mapping for the object type being referenced
so that Castor knows what the object's identity is.

matches Allows overriding the matches rules for the name of
the element. It is a standard regular expression and
will be used instead of the 'name' field. A '*' will
match any xml name, however it will only be
matched if no other field exists that matches the xml
name.

node Indicates if the name corresponds to an attribute, an
element, or text content. By default, primitive types
are assumed to be an attribute, otherwise the node is
assumed to be an elemen

transient Allows for making this field transient for XML. The
default value is inherited from the <field> element.

1.2.3.7.2. Nested class mapping

Since 0.9.5.3, the bind-xml element supports a nested class mapping, which is often useful when needing to
specify more than one mapping for a particular class. A good example of this is when mapping
Hashtable/HashMap/Map.

<bind-xml ...>
<class name="org.exolab.castor.mapping.MapItem">

<field name="key" type="java.lang.String">
<bind-xml name="id"/>

</field>
<field name="value" type="com.acme.Foo"/>

</class>
</bind-xml>

1.2.4. Usage Pattern

Here is an example of how Castor Mapping can be used. We want to map an XML document like the following
one (called 'order.xml'). model.

<Order reference="12343-AHSHE-314159">
<Client>
<Name>Jean Smith</Name>
<Address>2000, Alameda de las Pulgas, San Mateo, CA 94403</Address>

</Client>

<Item reference="RF-0001">
<Description>Stuffed Penguin</Description>
<Quantity>10</Quantity>
<UnitPrice>8.95</UnitPrice>

</Item>

<Item reference="RF-0034">
<Description>Chocolate</Description>
<Quantity5</Quantity>
<UnitPrice>28.50</UnitPrice>

</Item>

<Item reference="RF-3341">
<Description>Cookie</Description>
<Quantity>30</Quantity>
<UnitPrice>0.85</UnitPrice>

Castor XML - XML data binding

Castor (1.3.3) 23

</Item>
</Order>

Into the following object model composed of 3 classes:

• MyOrder: represent an order

• Client: used to store information on the client

• Item: used to store item in an order

The sources of these classes follow.

import java.util.Vector;
import java.util.Enumeration;

public class MyOrder {

private String _ref;
private ClientData _client;
private Vector _items;
private float _total;

public void setReference(String ref) {
_ref = ref;

}

public String getReference() {
return _ref;

}

public void setClientData(ClientData client) {
_client = client;

}

public ClientData getClientData() {
return _client;

}

public void setItemsList(Vector items) {
_items = items;

}

public Vector getItemsList() {
return _items;

}

public void setTotal(float total) {
_total = total;

}

public float getTotal() {
return _total;

}

// Do some processing on the data
public float getTotalPrice() {

float total = 0.0f;

for (Enumeration e = _items.elements() ; e.hasMoreElements() ;) {
Item item = (Item) e.nextElement();
total += item._quantity * item._unitPrice;

}

return total;
}

}

public class ClientData {

Castor XML - XML data binding

Castor (1.3.3) 24

private String _name;
private String _address;

public void setName(String name) {
_name = name;

}

public String getName() {
return _name;

}

public void setAddress(String address) {
_address = address;

}

public String getAddress() {
return _address;

}
}

public class Item {
public String _reference;
public int _quantity;
public float _unitPrice;
public String _description;

}

The XML document and the java object model can be connected by using the following mapping file:

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"

"http://castor.org/mapping.dtd">

<mapping>
<class name="MyOrder">
<map-to xml="Order"/>

<field name="Reference"
type="java.lang.String">

<bind-xml name="reference" node="attribute"/>
</field>

<field name="Total"
type="float">

<bind-xml name="total-price" node="attribute"/>
</field>

<field name="ClientData"
type="ClientData">

<bind-xml name="Client"/>
</field>

<field name="ItemsList"
type="Item"

collection="vector">
<bind-xml name="Item"/>

</field>
</class>

<class name="ClientData">
<field name="Name"

type="java.lang.String">
<bind-xml name="Name" node="element"/>

</field>

<field name="Address"
type="java.lang.String">

<bind-xml name="Address" node="element"/>
</field>

</class>

<class name="Item">

Castor XML - XML data binding

Castor (1.3.3) 25

<field name="_reference"
type="java.lang.String"
direct="true">

<bind-xml name="reference" node="attribute"/>
</field>

<field name="_quantity"
type="integer"
direct="true">

<bind-xml name="Quantity" node="element"/>
</field>

<field name="_unitPrice"
type="float"
direct="true">

<bind-xml name="UnitPrice" node="element"/>
</field>

<field name="_description"
type="string"
direct="true">

<bind-xml name="Description" node="element"/>
</field>

</class>

</mapping>

The following class is an example of how to use Castor XML Mapping to manipulate the file 'order.xml'. It
unmarshals the document 'order.xml', computes the total price, sets the total price in the java object and
marshals the object model back into XML with the calculated price.

import org.exolab.castor.mapping.Mapping;
import org.exolab.castor.mapping.MappingException;

import org.exolab.castor.xml.Unmarshaller;
import org.exolab.castor.xml.Marshaller;

import java.io.IOException;
import java.io.FileReader;
import java.io.OutputStreamWriter;

import org.xml.sax.InputSource;

public class main {

public static void main(String args[]) {

Mapping mapping = new Mapping();

try {
// 1. Load the mapping information from the file
mapping.loadMapping("mapping.xml");

// 2. Unmarshal the data
Unmarshaller unmar = new Unmarshaller(mapping);
MyOrder order = (MyOrder)unmar.unmarshal(new InputSource(new FileReader("order.xml")));

// 3. Do some processing on the data
float total = order.getTotalPrice();
System.out.println("Order total price = " + total);
order.setTotal(total);

// 4. marshal the data with the total price back and print the XML in the console
Marshaller marshaller = new Marshaller(new OutputStreamWriter(System.out));
marshaller.setMapping(mapping);
marshaller.marshal(order);

} catch (Exception e) {
System.out.println(e);
return;

}
}

}

Castor XML - XML data binding

Castor (1.3.3) 26

1.2.5. xsi:type

Ordinarily, a mapping will only reference types that are concrete classes (i.e. not interfaces nor abstract
classes). The reason is that to unmarshal a type requires instantiating it and one cannot instantiate an interface.
However, in many real situations, object models depend on the use of interfaces. Many class properties are
defined to have interface types to support the ability to swap implementations. This is often the case in
frameworks.

The problem is that a different mapping must be used each time the same model is to be used to
marshal/unmarshal an implementation that uses different concrete types. This is not convenient. The mapping
should represent the model and the specific concrete type used to unmarshal a document is a configuration
parameter; it should be specified in the instance document to be unmarshalled, not the mapping.

For example, assume a very simple object model of an engine that has one property that is a processor:

public interface IProcessor {
public void process();

}

public class Engine {
private IProcessor processor;
public IProcessor getProcessor() {

return processor;
}
public void setProcessor(IProcessor processor) {

this.processor = processor;
}

}

A typical mapping file for such a design may be:

<mapping>
<class name="Engine">

<map-to xml="engine" />

<field name="processor" type="IProcessor" required="true">
<bind-xml name="processor" node="element" />

</field>

</class>
</mapping>

It is possible to use such a mapping and still have the marshal/unmarshal process work by specifying the
concrete implementation of IProcessor in the document to be unmarshalled, using the xsi:type attribute, as
follows:

<engine>
<processor xsi:type="java:com.abc.MyProcessor" />

</engine>

In this manner, one is still able to maintain only a single mapping, but vary the manner in which the document
is unmarshalled from one instance document to the next. This flexibility is powerful because it enables the
support of polymorphism within the castor xml marshalling framework.

Suppose we wanted the following XML instead:

Castor XML - XML data binding

Castor (1.3.3) 27

<engine>
<myProcessor/>

</engine>

In the above output our XML name changed to match the type of the class used instead of relying on the
xsi:type attribute. This can be achieved by modifying the mapping file as such:

<mapping>
<class name="Engine">

<map-to xml="engine" />
<field name="processor" type="IProcessor" required="true">

<bind-xml auto-naming="deriveByClass" node="element" />
</field>

</class>

<class name="MyProcessor">
<map-to xml="myProcessor" />

</class>

</mapping>

1.2.6. Location attribute

Since 0.9.5

The location attribute allows the user to map fields from nested elements or specify a wrapper element for a
given field. Wrapper elements are simply elements which appear in the XML instance, but do not have a direct
mapping to an object or field within the object model.

For example to map an instance of the following class:

public class Foo {

private Bar bar = null;

public Foo();

public getBar() {
return bar;

}

public void setBar(Bar bar) {
this.bar = bar;

}
}

into the following XML instance:

<?xml version="1.0"?>
<foo>;

<abc>
<bar>...</bar>

</abc>
</foo>

(notice that an 'abc' field doesn't exist in the Bar class) One would use the following mapping:

<?xml version="1.0"?>
...
<class name="Foo">

Castor XML - XML data binding

Castor (1.3.3) 28

<field name="bar" type="Bar">
<bind-xml name="bar" location="abc"/>

</field>
</class>
...

</mapping>

Note the "location" attribute. The value of this attribute is the name of the wrapper element. To use more than
one wrapper element, the name is separated by a forward-slash as such:

<bind-xml name="bar" location="abc/xyz" />

Note that the name of the element is not part of the location itself and that the location is always relative to the
class in which the field is being defined. This works for attributes also:

<bind-xml name="bar" location="abc" node="attribute" />

will produce the following:

<?xml version="1.0"?>
<foo>

<abc bar="..."/>;
</foo>

1.2.7. Tips

Some helpful hints...

1.2.7.1. Automatically create a mapping file

Castor comes with a tool that can automatically create a mapping from class files. Please see the XML FAQ for
more information.

1.2.7.2. Create your own FieldHandler

Sometimes to handle complex situations you'll need to create your own FieldHandler. Normally a FieldHandler
deals with a specific class and field, however generic, reusable FieldHandlers can also be created by extending
org.exolab.castor.mapping.GeneralizedFieldHandler or org.exolab.castor.mapping.AbstractFieldHandler. The
FieldHandler can be specified on the <field> element.

For more information on writing a custom FieldHandler please see the following: XML FieldHandlers.

1.2.7.3. Mapping constructor arguments (since 0.9.5)

You may map any attributes to constructor arguments. For more information on how to map constructor
arguments see the information available in the section on set-method above.

Please note that mapping elements to constructor arguments is not yet supported.

Tip: the XML HOW-TO section has a HOW-TO document for mapping constructor arguments.

1.2.7.4. Preventing Castor from checking for a default constructor (since 0.9.5)

Castor XML - XML data binding

Castor (1.3.3) 29

xml.faq
xml.mapping.mappingfile.field.constructorarguments
xml.how-to

Sometimes it's useful to prevent Castor from checking for a default constructor, such as when trying to write a
mapping for an interface or type-safe enum. You can use the "undocumented" verify-constructable="false"
attribute on the <class> element to prevent Castor from looking for the default constructor.

1.2.7.5. Type safe enumeration mapping (since 0.9.5)

While you can always use your own custom FieldHandler for handling type-safe enumeration classes, Castor
does have a built-in approach to dealing with these types of classes. If the type-safe enum class has a public
static <type> valueOf(String) method Castor will call that method so that the proper instance of the
enumeration is returned. Note: You'll also need to disable the default constructor check in the mapping file (see
section 7.4 above to see more on this).

1.3. Configuring Castor XML (Un)Marshaller

1.3.1. Introduction

To be defined ...

1.3.2. Configuring the Marshaller

Before using the Marshaller class for marshalling Java objects to XML, the Marshaller can be fine-tuned
according to your needs by calling a variety of set-methods on this class. This section enlists the available
properties and provides you with information about their meaning, possible values and the default value.

Table 1.12. Marshaller properties

Name Description Values Default Since

suppressNamespaces true or false false -

1.3.3. Configuring the Unmarshaller

Before using the Unmarshaller class for unmarshalling Java objects from XML, the Unmarshaller can be
fine-tuned according to your needs by calling a variety of set-methods on this class. This section enlists the
available properties and provides you with information about their meaning, possible values and the default
value.

Table 1.13. Unmarshaller properties

Name Description Values Default Since

rootObject A Class instance
identifying the root
class to use for
unmarshalling.

- -

Castor XML - XML data binding

Castor (1.3.3) 30

1.4. Usage of Castor and XML parsers

1.4.1. SAX/DOM

Being an XML data binding framework by definition, Castor XML relies on the availability of an XML
parser at run-time. In Java, an XML parser is by default accessed though either the DOM or the SAX APIs: that
implies that the XML Parser used needs to comply with either (or both) of these APIs.

With the creation of the JAXP API (and its addition to the Java language definition as of Java 5.0), Castor
internally has been enabled to allow usage of the JAXP interfaces to interface to XML parsers. As such, Castor
XML allows the use of a JAXP-compliant XML parser as well.

By default, Castor ships with Apache Xerces 2.6.2. You may, of course, upgrade to a newer version of Apache
Xerces at your convenience, or switch to any other XML parser as long as it is JAXP compliant or implements
a particular SAX interface. Please note that users of Java 5.0 and above do not need to have Xerces available at
run-time, as JAXP and Xerces have both been integrated into the run-time library of Java.

For marshalling, Castor XML can equally use any JAXP complaint XML parser (or interact with an XML
parser that implements the SAX API), with the exception of the following special case: when using 'pretty
printing' during marshalling (by setting the corresponding property in castor.properties to true) with Java
1.4 or below, Apache Xerces has to be on the classpath, as Castor XML internally uses Xerces' XMLSerializer
to implement this feature.

The following table enlists the requirements relative to the Java version used in your environment.

Table 1.14. XML APIs on various Java versions

Java 1.4 and below Java 5.0 and above

Xerces 2.6.2 -

XML APIs -

1.4.2. StAX

As of Castor 1.3.2, Castor XML can be used with a StAX-compliant parser to unmarshal from XML. Please see
Example 1.1, “XML produced in introspection mode” for StAX-specific unmarshal methods added to
org.exolab.castor.xml.Unmarshaller.

1.5. XML configuration file

1.5.1. News

• Added a section on how to access the properties as defined in the Castor properties file from within code.

• Release 1.2.1: : Added new org.exolab.castor.xml.lenient.integer.validation property to allow
configuration of leniency for validation for Java properties generated from <xs:integer> types during code
generation.

Castor XML - XML data binding

Castor (1.3.3) 31

http://xml.apache.org/xerces
http://xml.apache.org/xerces
http://xml.apache.org/xerces
http://xml.apache.org/xerces

• Release 1.2: : Access to the org.exolab.castor.util.LocalConfiguration class has been removed
completely. To access the properties as used by Castor from code, please refer to the below section.

• Release 1.1.3: Added special processing of proxied classes. The property
org.exolab.castor.xml.proxyInterfaces allows you to specify a list of interfaces that such proxied objects
implement. If your object implements one of these interfaces Castor will not use the class itself but its
superclass at introspection or to find class mappings and ClassDescriptors.

• Release 0.9.7: Added new org.exolab.castor.persist.useProxies property to allow configuration of JDBC
proxy classes. If enabled, JDBC proxy classes will be used to wrap java.sql.Connection and
java.sql.PreparedStatement instances, to allow for more detailed and complete JDBC statements to be
output during logging. When turned off, no logging statements will be generated at all.

1.5.2. Introduction

Castor uses a configuration file for environmental properties that are shared across all the Castor sub systems.
The configuration file is specified as a Java properties file with the name castor.properties.

By definition, a default configuration file is included with the Castor XML JAR. Custom properties can be
supplied using one of the following methods. Please note that the custom properties specified will override the
default configuration.

• Place a file named castor.properties anywhere on the classpath of your application.

• Place a file named castor.properties in the working directory of your application.

• Use the system property org.castor.user.properties.location to specify the location of your custom
properties.

Please note that Castor XML - upon startup - will try the methods given above in exactly the sequence as stated
above; if it managed to find a custom property file using any of the given methods, it will cancel its search.

When running the provided examples, Castor will use the configuration file located in the examples directory
which specifies additional debugging information as well as pretty printing of all produced XML documents.

The following properties are currently supported in the configuration file:

Table 1.15.

Name Description Values Default Since

org.exolab.castor.xml.introspector.primitive.nodetypeProperty specifying
the type of XML
node to use for
primitive values,
either element or
attribute

element or
attribute

attribute -

org.exolab.castor.parserProperty specifying
the class name of
the SAX XML
parser to use.

- - -

org.exolab.castor.parser.validationSpecifies whether to true and false false -

Castor XML - XML data binding

Castor (1.3.3) 32

Name Description Values Default Since

perform XML
document validation
by default.

org.exolab.castor.parser.namespacesSpecifies whether to
support XML
namespaces by
default.

false and true false -

org.exolab.castor.xml.nspackagesSpecifies a list of
XML namespace to
Java package
mappings.

- - -

org.exolab.castor.xml.namingProperty specifying
the 'type' of the
XML naming
conventions to use.
Values of this
property must be
either mixed , lower
, or the name of a
class which extends
org.exolab.castor.xml.XMLNaming

.

mixed , lower , or
the name of a class
which extends
org.exolab.castor.xml.XMLNaming

lower -

org.castor.xml.java.namingProperty specifying
the 'type' of the Java
naming conventions
to use. Values of
this property must
be either null or the
name of a class
which extends link

org.castor.xml.JavaNaming.

null or the name of
a class which
extends link

org.castor.xml.JavaNaming.

null -

org.exolab.castor.marshalling.validationSpecifies whether to
use validation
during marshalling.

false or true true -

org.exolab.castor.indentSpecifies whether
XML documents (as
generated at
marshalling) should
use indentation or
not.

false or true false -

org.exolab.castor.sax.featuresSpecifies additional
features for the
XML parser.

A comma separated
list of SAX (parser)
features (that might
or might not be
supported by the
specified SAX
parser).

http://apache.org/xml/features/disallow-doctype-decl-

Castor XML - XML data binding

Castor (1.3.3) 33

Name Description Values Default Since

org.exolab.castor.sax.features-to-disableSpecifies features to
be disbaled on the
underlying SAX
parser.

A comma separated
list of SAX (parser)
features to be
disabled.

http://xml.org/sax/features/external-general-entities,
http://xml.org/sax/features/external-parameter-entities,
http://apache.org/xml/features/nonvalidating/load-external-dtd

1.0.4

org.exolab.castor.regexpSpecifies the regular
expression validator
to use.

A class that
implements
org.exolab.castor.util.RegExpValidator.

- -

org.exolab.castor.xml.strictelementsSpecifies whether to
apply strictness to
elements when
unmarshalling.
When enabled, the
existence of
elements in the
XML document,
which cannot be
mapped to a class,
causes a {@link
SAXException} to
be thrown. If set to
false, these
'unknown' elements
are ignored.

false or true false -

org.exolab.castor.xml.loadPackageMappingsSpecifies whether
the
ClassDescriptorResolver
should
(automatically)
search for and
consult with
package mapping
files (.castor.xml

) to retrieve class
descriptor
information

false or true true 1.0.2

org.exolab.castor.xml.serializer.factorySpecifying what
XML serializers
factory to use.

A class name org.exolab.castor.xml.XercesXMLSerializerFactory1.0

org.exolab.castor.xml.lenient.sequence.orderSpecifies whether
sequence order
validation should be
lenient.

false or true false 1.1

org.exolab.castor.xml.lenient.id.validationSpecifies whether
id/href validation
should be lenient.

false or true false 1.1

org.exolab.castor.xml.proxyInterfacesSpecifies whether or
not to search for an

A list of proxy
interfaces

- 1.1.3

Castor XML - XML data binding

Castor (1.3.3) 34

Name Description Values Default Since

proxy interface at
marshalling. If
property is not
empty the objects to
be marshalled will
be searched if they
implement one of
the given interface
names. If the
interface is
implemented, the
superclass will be
marshalled instead
of the class itself.

org.exolab.castor.xml.lenient.integer.validationSpecifies whether
validation for Java
properties generated
from <xs:integer>
should be lenient,
i.e. allow for int s
as well.

false or true false 1.2.1

org.exolab.castor.xml.versionSpecifies the XML
document version
number to be used
during marshalling;
defaults to 1.0.

1.0 or 1.1 1.0 1.3.2

Note
As of Castor 1.3.3, the default values for org.exolab.castor.sax.features and
org.exolab.castor.sax.features-to-disable have changed to include/disable selected features.

1.5.3. Accessing the properties from within code

As of Castor 1.1, it is possible to read and set the value of properties programmatically using the
getProperty(String) and setProperty(String,String) on the following classes:

• org.exolab.castor.xml.Unmarshaller

• org.exolab.castor.xml.Marshaller

• org.exolab.castor.xml.XMLContext

Whilst using the setter methods on the first two classes will change the settings of the respective instances only,
using the setProperty() method on the org.exolab.castor.xml.XMLContext class will change the
configuration globally, and affect all org.exolab.castor.xml.Unmarshaller and
org.exolab.castor.xml.Marshaller instances created thereafter using the
org.exolab.castor.xml.XMLContext.createUnmarshaller() and

Castor XML - XML data binding

Castor (1.3.3) 35

org.exolab.castor.xml.XMLContext.createMarshaller() methods.

1.6. Castor XML - Tips & Tricks

1.6.1. Logging and Tracing

When developing using Castor, we recommend that you use the various setLogWriter methods to get detailed
information and error messages.

Using a logger with org.exolab.castor.mapping.Mapping will provide detailed information about mapping
decisions made by Castor and will show the SQL statements being used.

Using a logger with org.exolab.castor.jdo.JDO will provide trace messages that show when Castor is
loading, storing, creating and deleting objects. All database operations will appear in the log; if an object is
retrieved from the cache or is not modified, there will be no trace of load/store operations.

Using a logger with org.exolab.castor.xml.Unmarshaller will provide trace messages that show conflicts
between the XML document and loaded objects.

A simple trace logger can be obtained from org.exolab.castor.util.Logger. This logger uses the standard
output stream, but prefixes each line with a short message that indicates who generated it. It can also print the
time and date of each message. Since logging is used for warning messages and simple tracing, Castor does not
require a sophisticated logging mechanism.

Interested in integratating Castor's logging with Log4J? Then see this question in the JDO FAQ.

1.6.2. Indentation

By default the marshaler writes XML documents without indentation. When developing using Castor or when
debugging an application that uses Castor, it might be desireable to use indentation to make the XML
documents human-readable. To turn indentation on, modify the Castor properties file, or create a new
properties file in the classpath (named castor.properties) with the following content:

org.exolab.castor.indent=true

Indentation inflates the size of the generated XML documents, and also consumes more CPU. It is
recommended not to use indentation in a production environment.

1.6.3. XML:Marshal validation

It is possible to disable the validation in the marshaling framework by modifying the Castor properties file or
by creating a new properties file in the classpath (named castor.properties) with the following content:

org.exolab.castor.marshalling.validation=false

1.6.4. NoClassDefFoundError

Castor XML - XML data binding

Castor (1.3.3) 36

http://www.castor.org/jdo-faq.html#How-can-I-integrate-Castor's-logging-with-a-logging-infrastructure-using-Log4J?

Check your CLASSPATH, check it often, there is no reason not to!

1.6.5. Mapping: auto-complete

Note

This only works with Castor-XML.

To save time when writing your mappings, try using the auto-complete attribute of class. When using
auto-complete, Castor will introspect your class and automatically fill in any missing fields.

Example:

<class name="com.acme.Foo" auto-complete="true"/>

This is also compatible with generated descriptor files. You can use a mapping file to override some of the
behavior of a compiled descriptor by using auto-complete.

Note

Be careful to make sure you use the exact field name as specified in the generated descriptor file in
order to modify the behavior of the field descriptor! Otherwise, you'll probably end up with two
fields being marshaled!

1.6.6. Create method

Castor requires that classes have a public, no-argument constructor in order to provide the ability to marshal &
unmarshal objects of that type.

create-method is an optional attribute to the <field> mapping element that can be used to overcome this
restriction in cases where you have an existing object model that consists of, say, singleton classes where
public, no-argument constructors must not be present by definition.

Assume for example that a class "A" that you want to be able to unmarshal uses a singleton class as one of its
properties. When attempting to unmarshal class "A", you should get an exception because the singleton property
has no public no-arg constructor. Assuming that a reference to the singleton can be obtained via a static
getInstance() method, you can add a "create method" to class A like this:

public MySingleton getSingletonProperty() {
return MySingleton.getInstance();

}

and in the mapping file for class A, you can define the singleton property like this:

<field name="mySingletonProperty"
type="com.u2d.MySingleton"
create-method="getSingletonProperty">

<bind-xml name="my-singleton-property" node="element" />
</field>

Castor XML - XML data binding

Castor (1.3.3) 37

This illustrates how the create-method attribute is quite a useful mechanism for dealing with exceptional
situations where you might want to take advantage of marshaling even when some classes do not have
no-argument public constructors.

Note

As of this writing, the specified create-method must exist as a method in the current class (i.e. the
class being described by the current <class> element). In the future it may be possible to use
external static factory methods.

1.6.7. MarshalListener and UnmarshalListener

Castor allows control on the object being marshaled or unmarshaled by a set of two listener interfaces:
MarshalListener and UnmarshalListener.

The MarshalListener interface located in org.exolab.castor.xml listens to two different events that are
intercepted by the following methods:

• preMarshal: this method is called before an object gets marshaled.

• postMarshal: this method is called once an object has been marshaled.

The UnmarshalListener located also in org.castor.xml listens to four different events that are intercepted by
the following methods:

• initialized: this method is called once an object has been instantiated.

• attributesProcessed: this method is called when the attributes have just been read and processed.

• fieldAdded: this method is called when an object is added to a parent.

• unmarshalled: this method is called when an object has been fully unmarshaled

Note: The UnmarshalListener had been part of org.exolab.castor.xml but as an extention of this interface
had been required a new interface in org.castor.xml was introduced. Currently the
org.exolab.castor.xml.UnmarshalListener interface can still be used but is deprecated.

1.7. Castor XML: Writing Custom FieldHandlers

1.7.1. Introduction

Sometimes we need to deal with a data format that Castor doesn't support out-of-the-box, such as an
unsupported Date/Time representation, or we want to wrap and unwrap fields in Wrapper objects to get the
desired XML output without changing our object model. To handle these cases Castor allows specifying a
custom org.exolab.castor.mapping.FieldHandler which can do these varying conversions during calls to
the fields setter and getter methods.

Note

The FieldHandler is the basic interface used by the Castor Framework when accessing field values

Castor XML - XML data binding

Castor (1.3.3) 38

or setting them. By specifying a custom FieldHandler in the mapping file we can basically
intercept the calls to retrieve or set a field's value and do whatever conversions are necessary.

1.7.2. Writing a simple FieldHandler

When a writing a FieldHandler handler we need to provide implementations of the various methods specified in
the FieldHandler interface. The main two methods are the getValue and setValue methods which will basically
handle all our conversion code. The other methods provide ways to create a new instance of the field's value or
reset the field value.

Tip

It's actually even easier to write custom field handlers if we use a GeneralizedFieldHandler. See
more details in Section 1.7.3, “Writing a GeneralizedFieldHandler”

Let's take a look at how to convert a date in the format YYYY-MM-DD using a custom FieldHandler. We want
to marshal the following XML input file text.xml:

<?xml version="1.0"?>
<root>2004-05-10</root>

The class we'll be marshalling from and unmarshalling to looks as follows:

import java.util.Date;

public class Root {

private Date _date;

public Root() {
super();

}

public Date getDate() {
return _date;

}

public void setDate(final Date date) {
_date = date;

}

So we need to write a custom FieldHandler that takes the input String and converts it into the proper
java.util.Date instance:

import org.exolab.castor.mapping.FieldHandler;
import org.exolab.castor.mapping.FieldDescriptor;
import org.exolab.castor.mapping.ValidityException;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

/**
* The FieldHandler for the Date class
*
*/
public class MyDateHandler implements FieldHandler
{

Castor XML - XML data binding

Castor (1.3.3) 39

private static final String FORMAT = "yyyy-MM-dd";

/**
* Creates a new MyDateHandler instance
*/

public MyDateHandler() {
super();

}

/**
* Returns the value of the field from the object.
*
* @param object The object
* @return The value of the field
* @throws IllegalStateException The Java object has changed and
* is no longer supported by this handler, or the handler is not
* compatible with the Java object
*/

public Object getValue(final Object object) throws IllegalStateException {
Root root = (Root)object;
Date value = root.getDate();
if (value == null) return null;
SimpleDateFormat formatter = new SimpleDateFormat(FORMAT);
Date date = (Date)value;
return formatter.format(date);

}

/**
* Sets the value of the field on the object.
*
* @param object The object
* @param value The new value
* @throws IllegalStateException The Java object has changed and
* is no longer supported by this handler, or the handler is not
* compatible with the Java object
* @throws IllegalArgumentException The value passed is not of
* a supported type
*/

public void setValue(Object object, Object value)
throws IllegalStateException, IllegalArgumentException {

Root root = (Root)object;
SimpleDateFormat formatter = new SimpleDateFormat(FORMAT);
Date date = null;
try {

date = formatter.parse((String)value);
}
catch(ParseException px) {

throw new IllegalArgumentException(px.getMessage());
}
root.setDate(date);

}

/**
* Creates a new instance of the object described by this field.
*
* @param parent The object for which the field is created
* @return A new instance of the field's value
* @throws IllegalStateException This field is a simple type and
* cannot be instantiated
*/

public Object newInstance(Object parent) throws IllegalStateException {
//-- Since it's marked as a string...just return null,
//-- it's not needed.
return null;

}

/**
* Sets the value of the field to a default value.
*
* Reference fields are set to null, primitive fields are set to
* their default value, collection fields are emptied of all
* elements.
*
* @param object The object

Castor XML - XML data binding

Castor (1.3.3) 40

* @throws IllegalStateException The Java object has changed and
* is no longer supported by this handler, or the handler is not
* compatible with the Java object
*/

public void resetValue(Object object) throws IllegalStateException, IllegalArgumentException {
((Root)object).setDate(null);

}
}

Tip

The newInstance method should return null for immutable types.

Note

There is also an org.exolab.castor.mapping.AbstractFieldHandler that we can extend instead
of implementing FieldHandler directly. Not only do we not have to implement deprecated methods,
but we can also gain access to the FieldDescriptor used by Castor.

In order to tell Castor that we want to use our Custom FieldHandler we must specify it in the mapping file
mapping.xml:

<?xml version="1.0"?>
<mapping>
<class name="Root">

<field name="date" type="string" handler="MyDateHandler">
<bind-xml node="text"/>

</field>
</class>

</mapping>

We can now use a simple Test class to unmarshal our XML document:

import java.io.*;
import org.exolab.castor.xml.*;
import org.exolab.castor.mapping.*;

public class Test {

public static void main(String[] args) {
try {

//--load mapping
Mapping mapping = new Mapping();
mapping.loadMapping("mapping.xml");

System.out.println("unmarshalling root instance:");
System.out.println();

Reader reader = new FileReader("test.xml");
Unmarshaller unmarshaller = new Unmarshaller(Root.class);
unmarshaller.setMapping(mapping);
Root root = (Root) unmarshaller.unmarshal(reader);
reader.close();

System.out.println("Root#getDate : " + root.getDate());
}
catch (Exception e) {

e.printStackTrace();
}

}
}

Castor XML - XML data binding

Castor (1.3.3) 41

Now simply compile the code and run!

% java Test
unmarshalling root instance:

Root#getDate : Mon May 10 00:00:00 CDT 2004

After running our test program we can see that Castor invoked our custom FieldHandler and we got our
properly formatted date in our Root.class.

1.7.3. Writing a GeneralizedFieldHandler

A org.exolab.castor.mapping.GeneralizedFieldHandler is an extension of FieldHandler interface where
we simply write the conversion methods and Castor will automatically handle the underlying get/set operations.
This allows us to re-use the same FieldHandler for fields from different classes that require the same
conversion.

Note

Note: Currently the GeneralizedFieldHandler cannot be used from a binding-file for use with the
SourceGenerator, an enhancement patch will be checked into SVN for this feature, shortly after
0.9.6 final is released.

The same FieldHandler we used above can be written as a GeneralizedFieldHandler as such:

import org.exolab.castor.mapping.GeneralizedFieldHandler;
import org.exolab.castor.mapping.FieldDescriptor;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

/**
* The FieldHandler for the Date class
*
*/
public class MyDateHandler extends GeneralizedFieldHandler {

private static final String FORMAT = "yyyy-MM-dd";

/**
* Creates a new MyDateHandler instance
*/

public MyDateHandler() {
super();

}

/**
* This method is used to convert the value when the
* getValue method is called. The getValue method will
* obtain the actual field value from given 'parent' object.
* This convert method is then invoked with the field's
* value. The value returned from this method will be
* the actual value returned by getValue method.
*
* @param value the object value to convert after
* performing a get operation
* @return the converted value.
*/

public Object convertUponGet(Object value) {
if (value == null) return null;
SimpleDateFormat formatter = new SimpleDateFormat(FORMAT);
Date date = (Date)value;
return formatter.format(date);

Castor XML - XML data binding

Castor (1.3.3) 42

}

/**
* This method is used to convert the value when the
* setValue method is called. The setValue method will
* call this method to obtain the converted value.
* The converted value will then be used as the value to
* set for the field.
*
* @param value the object value to convert before
* performing a set operation
* @return the converted value.
*/

public Object convertUponSet(Object value) {
SimpleDateFormat formatter = new SimpleDateFormat(FORMAT);
Date date = null;
try {

date = formatter.parse((String)value);
}
catch(ParseException px) {

throw new IllegalArgumentException(px.getMessage());
}
return date;

}

/**
* Returns the class type for the field that this
* GeneralizedFieldHandler converts to and from. This
* should be the type that is used in the
* object model.
*
* @return the class type of of the field
*/

public Class getFieldType() {
return Date.class;

}

/**
* Creates a new instance of the object described by
* this field.
*
* @param parent The object for which the field is created
* @return A new instance of the field's value
* @throws IllegalStateException This field is a simple
* type and cannot be instantiated
*/

public Object newInstance(Object parent) throws IllegalStateException
{

//-- Since it's marked as a string...just return null,
//-- it's not needed.
return null;

}

}

Everything else is the same. So we can re-run our test case using this GeneralizedFieldHandler and we'll get the
same result. The main difference is that we implement the convertUponGet and convertUponSet methods.

Notice that we never reference the Root class in our GeneralizedFieldHandler. This allows us to use the same
exact FieldHandler for any field that requires this type of conversion.

1.7.4. Use ConfigurableFieldHandler for more flexibility

In some situations, the GeneralizedFieldHandler might not provide sufficient flexibility. Suppose your XML
document uses more than one date format. You could solve this by creating a GeneralizedFieldHandler

subclass per date format, but that would lead to code duplication, which in itself is not desirable.

A ConfigurableFieldHandler is a FieldHandler that can be configured in the mapping file with any kind and

Castor XML - XML data binding

Castor (1.3.3) 43

any number of parameters. You can simply configure two (or more) instances of the same
ConfigurableFieldHandler class with different date format patterns. Here's a mapping file that uses a
ConfigurableFieldHandler to marshal and unmarshal the date field, similar to the preceding examples:

<?xml version="1.0"?>
<mapping>

<field-handler name="myHandler" class="FieldHandlerImpl">
<param name="date-format" value="yyyyMMddHHmmss"/>

</field-handler>

<class name="Root">
<field name="date" type="string" handler="myHandler"/>

</class>

</mapping>

The field-handler element defines the ConfigurableFieldHandler. The class must be an implementation of the
org.exolab.castor.mapping.ConfigurableFieldHandler interface. This instance is configured with a date format.
However, each implementation can decide which, and how many parameters to use.

The field handler instance is referenced by the field element, using the handler attribute.

Here's the ConfigurableFieldHandler implementation:

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.text.DateFormat;
import java.util.Date;
import java.util.Properties;

import org.exolab.castor.mapping.ConfigurableFieldHandler;
import org.exolab.castor.mapping.FieldHandler;
import org.exolab.castor.mapping.GeneralizedFieldHandler;
import org.exolab.castor.mapping.ValidityException;

public class FieldHandlerImpl implements FieldHandler, ConfigurableFieldHandler {

private DateFormat formatter;

public void setConfiguration(final Properties config) throws ValidityException {
String pattern = config.getProperty("date-format");
if (pattern == null) {

throw new ValidityException("Required parameter \"date-format\" is missing for FieldHandlerImpl.");
}
try {

formatter = new SimpleDateFormat(pattern);
} catch (IllegalArgumentException e) {

throw new ValidityException("Pattern \""+pattern+"\" is not a valid date format.");
}

}

/**
* Returns the value of the field from the object.
*
* @param object The object
* @return The value of the field
* @throws IllegalStateException The Java object has changed and
* is no longer supported by this handler, or the handler is not
* compatible with the Java object
*/

public Object getValue(Object object) throws IllegalStateException {
Root root = (Root)object;
Date value = root.getDate();
if (value == null) return null;
return formatter.format(value);

}

Castor XML - XML data binding

Castor (1.3.3) 44

/**
* Sets the value of the field on the object.
*
* @param object The object
* @param value The new value
* @throws IllegalStateException The Java object has changed and
* is no longer supported by this handler, or the handler is not
* compatible with the Java object
* @throws IllegalArgumentException The value passed is not of
* a supported type
*/

public void setValue(Object object, Object value)
throws IllegalStateException, IllegalArgumentException {
Root root = (Root)object;
Date date = null;
try {

date = formatter.parse((String)value);
}
catch(ParseException px) {

throw new IllegalArgumentException(px.getMessage());
}
root.setDate(date);

}

/**
* Creates a new instance of the object described by this field.
*
* @param parent The object for which the field is created
* @return A new instance of the field's value
* @throws IllegalStateException This field is a simple type and
* cannot be instantiated
*/

public Object newInstance(Object parent)
throws IllegalStateException

{
//-- Since it's marked as a string...just return null,
//-- it's not needed.
return null;

}

/**
* Sets the value of the field to a default value.
*
* Reference fields are set to null, primitive fields are set to
* their default value, collection fields are emptied of all
* elements.
*
* @param object The object
* @throws IllegalStateException The Java object has changed and
* is no longer supported by this handler, or the handler is not
* compatible with the Java object
*/

public void resetValue(Object object)
throws IllegalStateException, IllegalArgumentException {
((Root)object).setDate(null);

}

}

This implementation is similar to the first MyDateHandler example on this page, except that is adds a
setConfiguration method as specified by the ConfigurableFieldHandler interface. All parameters that are
configured in the mapping file will be passed in as a Properties object. The implementing method is
responsible for processing the configuration data.

As a convenience, org.exolab.castor.mapping.AbstractFieldHandler already implements
ConfigurableFieldHandler. However, the setConfiguration method is not doing anything. Any subclass of
AbstractFieldHandler only has to override this method to leverage the configuration capabilities. Since
AbstractFieldHandler and its subclass GeneralizedFieldHandler are useful abstract classes, you'd probably
want to use them anyway. It eliminates the need to implement the ConfigurableFieldHandler interface yourself.

Castor XML - XML data binding

Castor (1.3.3) 45

1.7.5. Reuse a ConfigurableFieldHandler for more than one field definition

Imagine a scenario where you want to use above ConfigurableFieldHandler instance for more than one field -
a valid use case as it promotes reuse.

<?xml version="1.0"?>
<mapping>

<field-handler name="myFirstHandler" class="FieldHandlerImpl">
<param name="date-format" value="yyyyMMddHHmmss"/>

</field-handler>

<field-handler name="mySecondHandler" class="FieldHandlerImpl">
<param name="date-format" value="yyyy-MM-ddHH:mm:ss"/>

</field-handler>

<class name="Root">
<field name="firstDate" type="string" handler="myFirstHandler"/>
<field name="secondDate" type="string" handler="myFirstHandler"/>
<field name="thirdDate" type="string" handler="mySecondHandler"/>

</class>

</mapping>

For this to work, there's one more thing you will have to do: your ConfigurableFieldHandler implementation
has to implement the ClonableFieldHandlerMarker interface and implement the copyFieldHandler()

method. As indicated by the name, please return a clone/copy of your FieldHandler instance ... and you are all
set.

A simplified sample implementation could look as follows, extending the FieldHandlerImpl class from the
previous section:

public class FieldHandlerImpl implements FieldHandler, ConfigurableFieldHandler, ClonableFieldHandlerMarker {

private DateFormat format;

...

public void setFormat(DateFormat format) {
this.format = format;

}

@Override
public FieldHandler copyFieldHandler() {

FieldHandlerImpl handler = new FieldHandlerImpl();
handler.setFormat(this.getFormat());
return handler;

}

}

1.7.6. No Constructor, No Problem!

A number of classes such as type-safe enum style classes have no constructor, but instead have some sort of
static factory method used for converting a string value into an instance of the class. With a custom
FieldHandler we can allow Castor to work nicely with these types of classes.

Tip

Castor XML - XML data binding

Castor (1.3.3) 46

Castor XML automatically supports these types of classes if they have a specific method:

public static {Type} valueOf(String)

Note

We're working on the same support for Castor JDO

Even though Castor XML supports the "valueOf" method type-safe enum style classes, we'll show you how to
write a custom handler for these classes anyway since it's useful for any type of class regardless of the name of
the factory method.

Let's look at how to write a handler for the following type-safe enum style class, which was actually generated
by Castor XML (javadoc removed for brevity):

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Hashtable;

public class Color implements java.io.Serializable {

public static final int RED_TYPE = 0;

public static final Color RED = new Color(RED_TYPE, "red");

public static final int GREEN_TYPE = 1;

public static final Color GREEN = new Color(GREEN_TYPE, "green");

public static final int BLUE_TYPE = 2;

public static final Color BLUE = new Color(BLUE_TYPE, "blue");

private static java.util.Hashtable _memberTable = init();

private int type = -1;

private java.lang.String stringValue = null;

private Color(int type, java.lang.String value) {
super();
this.type = type;
this.stringValue = value;

} //-- test.types.Color(int, java.lang.String)

public static java.util.Enumeration enumerate()
{

return _memberTable.elements();
} //-- java.util.Enumeration enumerate()

public int getType()
{

return this.type;
} //-- int getType()

private static java.util.Hashtable init()
{

Hashtable members = new Hashtable();
members.put("red", RED);
members.put("green", GREEN);
members.put("blue", BLUE);
return members;

} //-- java.util.Hashtable init()

Castor XML - XML data binding

Castor (1.3.3) 47

public java.lang.String toString()
{

return this.stringValue;
} //-- java.lang.String toString()

public static Color valueOf(java.lang.String string)
{

Object obj = null;
if (string != null) obj = _memberTable.get(string);
if (obj == null) {

String err = "'" + string + "' is not a valid Color";
throw new IllegalArgumentException(err);

}
return (Color) obj;

} //-- test.types.Color valueOf(java.lang.String)

}

The GeneralizedFieldHandler for the above Color class is as follows (javadoc removed for brevity):

import org.exolab.castor.mapping.GeneralizedFieldHandler;
import org.exolab.castor.mapping.FieldDescriptor;

/**
* The FieldHandler for the Color class
**/
public class ColorHandler

extends GeneralizedFieldHandler
{

public ColorHandler() {
super();

}

public Object convertUponGet(Object value) {
if (value == null) return null;
Color color = (Color)value;
return color.toString();

}

public Object convertUponSet(Object value) {
return Color.valueOf((String)value);

}

public Class getFieldType() {
return Color.class;

}

public Object newInstance(Object parent)
throws IllegalStateException

{
//-- Since it's marked as a string...just return null,
//-- it's not needed.
return null;

}

}

That's all there really is to it. Now we just need to hook this up to our mapping file and run a sample test.

If we have a root class Foo as such:

public class Foo {

private Color _color = null;
private int _size = 0;
private String _name = null;

public Foo() {

Castor XML - XML data binding

Castor (1.3.3) 48

super();
}

public Color getColor() {
return _color;

}

public String getName() {
return _name;

}

public int getSize() {
return _size;

}

public void setColor(Color color) {
_color = color;

}

public void setName(String name) {
_name = name;

}

public void setSize(int size) {
_size = size;

}

}

Our mapping file would be the following:

<?xml version="1.0"?>
<mapping>
<class name="Foo">

<field name="size" type="integer">
<bind-xml node="element"/>

</field>
<field name="name" type="string"/>
<field name="color" type="string" handler="ColorHandler"/>

</class>
</mapping>

We can now use our custom FieldHandler to unmarshal the following xml input:

<?xml version="1.0"?>
<foo>

<name>MyFoo</name>
<size>345</size>
<color>blue</color>

</foo>

A sample test class is as follows:

import java.io.*;
import org.exolab.castor.xml.*;
import org.exolab.castor.mapping.*;

public class Test {

public static void main(String[] args) {
try {

//--load mapping
Mapping mapping = new Mapping();
mapping.loadMapping("mapping.xml");

System.out.println("unmarshalling Foo:");
System.out.println();

Castor XML - XML data binding

Castor (1.3.3) 49

Reader reader = new FileReader("test.xml");
Unmarshaller unmarshaller = new Unmarshaller(Foo.class);
unmarshaller.setMapping(mapping);
Foo foo = (Foo) unmarshaller.unmarshal(reader);
reader.close();

System.out.println("Foo#size : " + foo.getSize());
System.out.print("Foo#color: ");
if (foo.getColor() == null) {

System.out.println("null");
}
else {

System.out.println(foo.getColor().toString());
}

PrintWriter pw = new PrintWriter(System.out);
Marshaller marshaller = new Marshaller(pw);
marshaller.setMapping(mapping);
marshaller.marshal(foo);
pw.flush();
}
catch (Exception e) {

e.printStackTrace();
}

}
}

1.7.7. Collections and FieldHandlers

Note

With Castor 0.9.6 and later, the GeneralizedFieldHandler automatically supports iterating over the
items of a collection and passing them one-by-one to the convertUponGet.

For backward compatibility or to handle the collection iteration yourself, simply add the following
to the constructor of your GeneralizedFieldHandler implementation:

setCollectionIteration(false);

If you're going to be using custom field handlers for collection fields with a GeneralizedFieldHandler using
versions of Castor prior to 0.9.6, then you'll need to handle the collection iteration yourself in the
convertUponGet method.

If you're not using a GeneralizedFieldHandler, then you'll need to handle the collection iteration yourself in
the FieldHandler#getValue() method.

Tip

Since Castor incrementally adds items to collection fields, there usually is no need to handle
collections directly in the convertUponSet method (or the setValue() for those not using
GeneralizedFieldHandler).

1.8. Best practice

Castor XML - XML data binding

Castor (1.3.3) 50

There are many users of Castor XML who (want to) use Castor XML in in high-volume applications. To
fine-tune Castor for such an environment, it is necessary to understand many of the product features in detail
and to be able to balance their use according to the application needs. Even though many of these features are
documented in various places, people frequently asked for a 'best practices' document, a document that brings
together these technical topics in one place and that presents them as a set of easy-to-use recipes.

Please be aware that this document is under construction. But still we believe that this document -- even when
in its conception phase -- provides valuable information to users of Castor XML.

1.8.1. General

1.8.1.1. Source Generator

It is not generally recommended to generate code into the default package, especially since code in the default
package cannot be referenced from code in any other package.

Additionally, we recommend that generated code go into a different package then the code that makes use of
the generated code. For example, if your application uses Castor to process an XML configuration file that is
used by code in the package org.example.userdialog then we do not recommend that the generated code also
go into that package. However, it would be reasonable to generate source to process this XML configuration
file into the package org.example.userdialog.xmlconfig.

1.8.2. Performance Considerations

1.8.2.1. General

Creating instances of org.exolab.castor.xml.Marshaller and org.exolab.castor.xml.Unmarshaller for
the purpose of XML data binding is easy to achieve at the API usage level. However, details of API use have
an impact on application performance; each instance creation involves setup operations.

This is generally not an issue for one-off invocations; however, in a multi-threaded, high volume use scenario
this can be become a serious issue. Internally, Castor uses a collection of Descriptor classes to keep
information about the Java entities to be marshaled and unmarshaled. With each instance creation of
(Un)Marshaller, this collection will be built from scratch (again and again).

To avoid this initial configuration 'penalty', Castor allows you to cache these Descriptor classes through its
org.exolab.castor.xml.ClassDescriptorResolver component. This cache allows reuse of these Descriptor
instances between (Un)Marshaller invocations.

1.8.2.2. Use of XMLContext - With and without a mapping file

With the introduction of the new org.exolab.castor.xml.XMLContext class, the use of a
ClassDescriptorResolver has been greatly simplified in that such an instance is managed by the XMLContext
per default. As such, there's no need to pass a ClassDescriptorResolver instance to Marshaller/
Unmarshaller instances anymore, as this is done automatically when such instances are created through

• org.exolab.castor.xml.XMLContext.createMarshaller()

• org.exolab.castor.xml.XMLContext.createUnmarshaller()

For example, to create a Marshaller instance that is pre-configured with an instance of
ClassDescriptorResolver, use the following code fragment:

Castor XML - XML data binding

Castor (1.3.3) 51

Mapping mapping = new Mapping();
mapping.loadMapping(new InputSource(...));

XMLContext context = new XMLContext();
context.addMapping(mapping);

Marshaller marshaller = context.createMarshaller();

In the case where no mapping file is used, it is still possible to instruct the
org.exolab.castor.xml.XMLContext to pre-load class descriptors for a given package via the methods
enlisted below.

As above, create an instance of org.exolab.castor.xml.XMLContext and configure it according to your needs
as shown below:

XMLContext context = new XMLContext();
context.addPackage("your.package.name");

Marshaller marshaller = context.createMarshaller();

The org.exolab.castor.xml.XMLContext class provides for various methods to load class descriptors for
individual classes and/or packages.

Table 1.16. Methods on XMLContext to create Un-/Marshaller objects

Method Description .castor.cdr

addClass(Class) on
org.exolab.castor.xml.XMLContext

Loads the class descriptor for one
class.

n/a

addClass(Class[]) on
org.exolab.castor.xml.XMLContext

Loads the class descriptors for a
collection of classes.

n/a

addPackage(String) on
org.exolab.castor.xml.XMLContext

Loads the class descriptor for all
classes in the defined package.

Required

addPackages(String[]) on
org.exolab.castor.xml.XMLContext

Loads the class descriptor for all
classes in the defined packages.

Required

Note

For some of the methods, pre-loading class descriptords will only work if you provide the
.castor.cdr file with your generated classes (as generated by the XML code generator). If no such
file is shipped, Castor will not be able to pre-load the descriptors, and will fall back to its default
descriptor loading mechanism.

1.8.2.3. Use of Marshaller/Unmarshaller

1.8.2.3.1. Use of ClassDescriptorResolver

When you do not use the XMLContext class, you will have to manually manage your
org.exolab.castor.xml.XMLClassDescriptorResolver. To do so, first create an instance of
org.exolab.castor.xml.XMLClassDescriptorResolver using the following code fragment:

Castor XML - XML data binding

Castor (1.3.3) 52

XMLClassDescriptorResolver classDescriptorResolver =
(XMLClassDescriptorResolver) ClassDescriptorResolverFactory.createClassDescriptorResolver(BindingType.XML);

MappingUnmarshaller mappingUnmarshaller = new MappingUnmarshaller();
MappingLoader mappingLoader =

mappingUnmarshaller.getMappingLoader(mapping, BindingType.XML);
classDescriptorResolver.setMappingLoader(mappingLoader);

and then reuse this instance as shown below:

Unmarshaller unmarshaller = new Unmarshaller();
unmarshaller.setResolver(classDescriptorResolver);
unmarshaller.unmarshal(...);

1.8.2.3.2. Use of ClassDescriptorResolver for pre-loading compiled
descriptors

When you are not using a mapping file, but you have generated Java classes and their corresponding descriptor
classes using the Castor XML code generator, you might want to instruct the
org.exolab.castor.xml.XMLClassDescriptorResolver to pre-load class descriptors (as enumerated
explicitly or for a given package) using various add* methods.

As above, create an instance of
org.exolab.castor.xml.XMLClassDescriptorResolver">XMLClassDescriptorResolver using the following
code fragment:

XMLClassDescriptorResolver classDescriptorResolver = (XMlClassDescriptorResolver)
ClassDescriptorResolverFactory.createClassDescriptorResolver(BindingType.XML);

classDescriptorResolver.setClassLoader(...);
classDescriptorResolver.addClass("your.package.name.A");
classDescriptorResolver.addClass("your.package.name.B");
classDescriptorResolver.addClass("your.package.name.C");

and then reuse this instance as shown above. Alternatively, add complete packages to the resolver configuration
as follows:

XMLClassDescriptorResolver classDescriptorResolver = (XMlClassDescriptorResolver)
ClassDescriptorResolverFactory.createClassDescriptorResolver(BindingType.XML);

classDescriptorResolver.setClassLoader(...);
classDescriptorResolver.addPackage("your.package.name");

The org.exolab.castor.xml.XMLClassDescriptorResolver interface provides various other methods to load
class descriptors for individual classes and/or packages.

Table 1.17. blah

Method Description Requires .castor.cdr

addClass(String) Loads the class descriptor for one
class.

No

addClass(String[]) Loads the class descriptors for a
collection of classes.

No

Castor XML - XML data binding

Castor (1.3.3) 53

Method Description Requires .castor.cdr

addPackage(String) Loads the class descriptors for all
classes in the package defined.

Yes

addPackages(String[]) Loads the class descriptors for all
classes in the package defined.

Yes

Note

For some of the methods, pre-loading class descriptords will only work if you provide the
.castor.cdr file with your generated classes (as generated by the XML code generator). If no such
file is shipped, Castor will not be able to pre-load the descriptors, and will fall back to its default
descriptor loading mechanism.

1.9. Castor XML - HOW-TO's

1.9.1. Introduction

This is a collection of HOW-TOs. The Castor project is actively seeking additional HOW-TO contributors to
expand this collection. For information on how to do that, please see 'How to write a How-to'.

1.9.2. Documentation

• How to Author a How-To (Author wanted!)

• How to Author an FAQ (Author wanted!)

• How to Author a Code Snippet (Author wanted!)

• How to Author Core Documentation (Author wanted!)

1.9.3. Contribution

• How to submit an XML-specific bug report

• How to prepare a patch

• How to Contribute a Patch via Jira (Author wanted!)

• How to run Castor XML's test suite

1.9.4. Mapping

• How to use XMLContext for un-/marshalling

• How to map a collection of elements

Castor XML - XML data binding

Castor (1.3.3) 54

http://www.castor.org/how-to-submit-an-xml-bug.html
http://www.castor.org/how-to-prepare-a-patch.html
http://www.castor.org/how-to-run-xml-ctf-suite.html
http://www.castor.org/how-to-use-XMLContext.html
http://www.castor.org/how-to-map-a-collection.html

• How to map a map/hashtable of elements

• How to map a list of elements at the root

• How to map constructor arguments

• How to map an inner class

• How to Unmarshal raw XML segments into arbitrary types

• How to use references in XML and Castor

• How to wrap a collection with a wrapper element

• How to prevent a collection from being exposed

• How to write a configurable field handler

• How to map text content

• How to work with wrapper elements around collections

• How to work marshal XML documents with version 1.1

1.9.5. Validation

• How to use XML validation

1.9.6. Source generation

• How to use a binding file with source generation

1.9.7. Others

• How to implement a custom serializer

• How to fetch DTDs and XML Schemas from JAR files

• How to marshal Hibernate proxies

1.10. XML FAQ

This section provides answers to frequently answered questions, i.e. questions that have been asked repeatedly
on one of the mailing lists. Please check with these F.A.Q.s frequently, as addressing questions that have been
answered in the past already again and again places an unnecessary burden on the committers/contributors.

This section is structured along the lines of the following areas ...

• Section 1.10.1, “General”

Castor XML - XML data binding

Castor (1.3.3) 55

http://www.castor.org/how-to-map-a-hashtable.html
http://www.castor.org/how-to-map-a-list-at-root.html
http://www.castor.org/how-to-map-a-class-with-constructors.html
http://www.castor.org/how-to-map-an-inner-class.html
http://www.castor.org/how-to-unmarshal-raw-xml.html
http://www.castor.org/how-to-use-references-in-xml.html
http://www.castor.org/how-to-wrap-a-collection-with-a-wrapper-element.html
http://www.castor.org/how-to-prevent-collection-from-being-exposed.html
http://www.castor.org/how-to-write-a-configurablefieldhandler.html
http://www.castor.org/how-to-map-both-structure-and-content.html
http://www.castor.org/how-to-work-with-wrapper-elements-around-collections.html
http://www.castor.org/how-to-marshall-version-1.1-xml.html
http://www.castor.org/how-to-enable-xml-validation.html
http://www.castor.org/how-to-use-a-binding-file-with-source-generation.html
http://www.castor.org/how-to-implement-custom-serializer.html
http://www.castor.org/how-to-fetch-dtds-and-schemas-from-jars.html
http://www.castor.org/how-to-map-hibernate-proxies.html

• Section 1.10.2, “Introspection”

• Section 1.10.3, “Mapping”

• Section 1.10.4, “Marshalling”

• Section 1.10.5, “Source code generation”

• Section 1.10.6, “Miscellaneous”

• Section 1.10.7, “Serialization”

1.10.1. General

1.10.1.1. How do I set the encoding?

Create a new instance of the Marshaller class and use the setEncoding method. You'll also need to make sure
the encoding for the Writer is set properly as well:

...
String encoding = "ISO-8859-1";
FileOutputStream fos = new FileOutputStream("result.xml");
OutputStreamWriter osw = new OuputStreamWriter(fos, encoding);
Marshaller marshaller = new Marshaller(osw);
marshaller.setEncoding(encoding);
...

1.10.1.2. I'm getting an error about 'xml' prefix already declared?

Note

For Castor 0.9.5.2 only

The issue occurs with newer versions of Xerces than the version 1.4 that ships with Castor. The older version
works OK. For some reason, when the newer version of Xerces encounters an "xml" prefixed attribute, such as
"xml:lang", it tries to automatically start a prefix mapping for "xml". Which, in my opinion, is technically
incorrect. They shouldn't be doing that. According to the w3c, the "xml" prefix should never be declared.

The reason it started appearing in the new Castor (0.9.5.2), is because of a switch to SAX 2 by default during
unmarshaling.

Solution: A built in work-around has been checked into the Castor SVN and will automatically exist in any
post 0.9.5.2 releases. For those who are using 0.9.5.2 and can't upgrade, I found a simple workaround (tested
with Xerces 2.5). At first I thought about disabling namespace processing in Xerces, but then realized that it's
already disabled by default by Castor ... so I have no idea why they call #startPrefixMapping when namespace
processing has been disabled. But in any event... explicitly enabling namespace processing seems to fix the
problem:

in the castor.properties file, change the following line:

org.exolab.castor.parser.namespaces=false

Castor XML - XML data binding

Castor (1.3.3) 56

to:

org.exolab.castor.parser.namespaces=true

Note

This work-around has only been tested with Xerces 2.5 and above.

1.10.1.3. Why is my 'get' method called twice?

The get method will be called a second time during the validation process. To prevent this from happening,
simply disable validation on the Marshaller or Unmarshaller.

1.10.1.4. How can I speed up marshalling/unmarshalling performance?

• Cache the descriptors!

import org.exolab.castor.xml.ClassDescriptorResolver;
import org.exolab.castor.xml.Unmarshaller;
import org.exolab.castor.xml.util.ClassDescriptorResolverImpl;
...
ClassDescriptorResolver cdr = new ClassDescriptorResovlerImpl();
...
Unmarshaller unm = new Unmarshaller(...);
unm.setResolver(cdr);

By reusing the same ClassDescriptorResolver any time you create an Unmarshaller instance, you will be
reusing the existing class descriptors previously loaded.

• Disable validation

unm.setValidation(false);

• Reuse objects

To cut down on object creation, you can reuse an existing object model, but be careful because this is an
experimental feature. Create an Unmarshaller with your existing root object and set object reuse to true...

Unmarshaller unm = new
Unmarshaller(myObjectRoot);

unm.setReuseObjects(true);

• If you have enabled pretty-printing (indenting), then disable it. The Xerces Serializer is much slower with
indenting enabled.

Castor XML - XML data binding

Castor (1.3.3) 57

• Try changing parsers to something other than Xerces.

There are probably other approaches you can use as well, but those seem to be the most popular ones. Let us
know if you have a solution that you think we should add here.

1.10.1.5. How do I ignore elements during unmarshalling?

• Use the Unmarshaller#setIgnoreExtraElements() method:

Unmarshaller unm = new Unmarshaller(...);
unm.setIgnoreExtraElements(true);

If any elements appear in the XML instance that Castor cannot find mappings for, they will be skipped.

• You can also set the org.exolab.castor.xml.strictelements property in the castor.properties file:

org.exolab.castor.xml.strictelements=true

1.10.1.6. Where does Castor search for the castor.properties file?

Castor loads the castor.properties in the following order:

• From classpath (usually from the jar file)

• From {java.home}/lib (if present)

• From the local working directory

Each properties file overrides the previous. So you don't have to come up with a properties file with all the
properties and values, just the ones you want to change. This also means you don't have to touch the properties
file found in the jar file.

Note

Note: You can also use LocalConfiguration.getInstance().getProperties() to change the
properties values programatically.

1.10.1.7. Can I programmatically change the properties found in the castor.properties file?

Yes, many of these properties can be set directly on the Marshaller or Unmarshaller, but you can also use
LocalConfiguration.getInstance().getProperties() to change the properties values programatically.

1.10.2. Introspection

1.10.2.1. Can private methods be introspected?

Castor does not currently support introspection of private methods. Please make sure proper public accesssor
methods are available for all fields that you wish to be handled by the Marshalling Framework.

Castor XML - XML data binding

Castor (1.3.3) 58

1.10.3. Mapping

1.10.3.1. My mapping file seems to have no effect!

Make sure you are not using one of the static methods on the Marshaller/Unmarshaller. Any configuration
changes that you make to the Marshaller or Unmarshaller are not available from the static methods.

1.10.3.2. Are there any tools to automatically create a mapping file?

Yes! We provide one such tool, see org.exolab.castor.tools.MappingTool . There are some 3rd party tools
as well.

1.10.3.3. How do I specify a namespace in the mapping file?

For a specific field you can use a QName for the value of the bind-xml name attribute as such:

<bind-xml name="foo:bar" xmlns:foo="http://www.acme.com/foo"/>

Note: The namespace prefix is only used for qualification during the loading of the mapping, it is not used
during Marshaling. To map namespace prefixes during marshaling you currently need to set these via the
Marshaler directly.

For a class mapping, use the <map-to> element. For more information see the XML Mapping documentation .

1.10.3.4. How do I prevent a field from being marshaled?

Set the transient attribute on the <bind-xml> element to true:

<bind-xml transient="true"/>

Note: You can also set transient="true" on the <field> element.

1.10.4. Marshalling

1.10.4.1. The XML is marshalled on one line, how do I force line-breaks?

For all versions of Castor:

To enable pretty-printing (indenting, line-breaks) just modify the castor.properties file and uncomment the
following:

True if all documents should be indented on output by default
#
#org.exolab.castor.indent=true

Note: This will slow down the marshalling process

1.10.4.2. What is the order of the marshalled XML elements?

Castor XML - XML data binding

Castor (1.3.3) 59

http://www.castor.org/extras.html
http://www.castor.org/xml-mapping.html

If you are using Castor's default introspection to automatically map the objects into XML, then there is no
guarantee on the order. It simply depends on the order in which the fields are returned to Castor using the Java
reflection API.

Note: If you use a mapping file Castor will generate the XML in the order in which the mapping file is
specified.

1.10.5. Source code generation

1.10.5.1. Can I use a DTD with the source generator?

Not directly, however you can convert your DTD to an XML Schema fairly easily. We provide a tool (
org.exolab.castor.xml.dtd.Converter) to do this. You can also use any number of 3rd-party tools such as
XML Spy or XML Authority.

1.10.5.2. My XML output looks incorrect, what could be wrong?

Also: I used the source code generator, but all my xml element names are getting marshaled as lowercase with
hyphens, what's up with that?

Solution: Are the generated class descriptors compiled? Make sure they get compiled along with the source
code for the object model.

1.10.5.3. The generated source code has incorrect or missing imports for imported schema
types

Example: Castor generates the following:

import types.Foo;

instead of:

import com.acme.types.Foo;

This usually happens when the namespaces for the imported schemas have not been mapped to appropriate java
packages in the castorbuilder.properties file.

Solution:

• Make sure the castorbuilder.properties is in your classpath when you run the SourceGenerator.

• Uncomment and edit the org.exolab.castor.builder.nspackages property. Make sure to copy the value
of the imported namespace exactly as it's referred to in the schema (i.e. trailing slashes and case-sensitivity
matter!).

For those using 0.9.5.1, you'll need to upgrade due to a bug that is fixed in later releases.

1.10.5.4. How can I make the generated source code more JDO friendly?

Castor XML - XML data binding

Castor (1.3.3) 60

For Castor 0.9.4 and above:

Castor JDO requires a reference to the actual collection to be returned from the get-method. By default the
source generator does not provide such a method. To enable such methods to be created, simple add the
following line to your castorbuilder.properties file:

org.exolab.castor.builder.extraCollectionMethods=true

Note: The default castorbuilder.properties file has this line commented out. Simply uncomment it.

Your mapping file will also need to be updated to include the proper set/get method names.

1.10.6. Miscellaneous

1.10.6.1. Is there a way to automatically create an XML Schema from an XML instance?

Yes! We provide such a tool. Please see org.exolab.castor.xml.schema.util.XMLInstance2Schema . It's
not 100% perfect, but it does a reasonable job.

1.10.6.2. How to enable XML validation with Castor XML

To enable XML validation at the parser level, please add properties to your castor.properties file as follows:

org.exolab.castor.parser.namespaces=true
org.exolab.castor.sax.features=http://xml.org/sax/features/validation,\
http://apache.org/xml/features/validation/schema,\
http://apache.org/xml/features/validation/schema-full-checking

Please note that the example given relies on the use of Apache Xerces, hence the apache.org properties;
similar options should exist for other parsers.

1.10.6.3. Why is mapping ignored when using a FieldHandlerFactory

When using a custom FieldHandlerFactory as in the following example

Mapping mapping = ... ;
FieldHandlerFactoyt factory = ...;
Marshaller m = new Marshaller(writer);
ClassDescriptorResolverImpl cdr = new ClassDescriptorResolverImpl();
cdr.getIntrospector().addFieldHandlerFactory(factory);
m.setResolver(cdr);
marshaller.setMapping(mapping);

please make sure that you set the mapping file after you set the ClassDescriptorResolver. You will note the
following in the Javadoc for
org.exolab.castor.xml.Marshaller.html#setResolver(org.exolab.castor.xml.ClassDescriptorResolver)

:

Note

Castor XML - XML data binding

Castor (1.3.3) 61

Note: This method will nullify any Mapping currently being used by this Marshaller

1.10.7. Serialization

1.10.7.1. Is it true that the use of Castor XML mandates Apache Xerces as XML parser?

Yes and no. It actually depends. When requiring pretty printing during marshalling, Castor internally relies on
Apache's Xerces to implement this feature. As such, when not using this feature, Xerces is not a requirement,
and any JAXP-compliant XML parser can be used (for unmarshalling).

In other words, with the latter use case, you do not have to download (and use) Xerces separetely.

1.10.7.2. Do I still have to download Xerces when using Castor XML with Java 5.0?

No. Starting with release 1.1, we have added support for using the Xerces instance as shipped with the
JRE/JDK for serialization. As such, for Java 5.0 users, this removes the requirement to download Xerces
separately when wanting to use 'pretty printing' with Castor XML during marshalling.

To enable this feature, please change the following properties in your local castor.properties file (thus
redefining the default value) as shown below:

Defines the XML parser to be used by Castor.
The parser must implement org.xml.sax.Parser.
org.exolab.castor.parser=org.xml.sax.helpers.XMLReaderAdapter

Defines the (default) XML serializer factory to use by Castor, which must
implement org.exolab.castor.xml.SerializerFactory; default is
org.exolab.castor.xml.XercesXMLSerializerFactory
org.exolab.castor.xml.serializer.factory=org.exolab.castor.xml.XercesJDK5XMLSerializerFactory

Defines the default XML parser to be used by Castor.
org.exolab.castor.parser=com.sun.org.apache.xerces.internal.parsers.SAXParser

Castor XML - XML data binding

Castor (1.3.3) 62

http://xerces.apache.org

Chapter 2. XML code generation

2.1. Why Castor XML code generator - Motivation

tbd

2.2. Introduction

2.2.1. News

2.2.1.1. Source generation & Java field naming conventions

Starting with release 1.3.3, the Castor source generator supports a new naming scheme for Java field names,
which will be enabled by default. As such, Java field names as generated will follow more closely the standard
Java property naming conventions. Should there be a need to keep using the old naming schema, please amend
the following property in your custom castorbuilder.properties file:

#
Property specifying whether for Java field names the old naming conventions
should be used.
#
Possible values:
- true
- false (default)
#
<pre>
org.exolab.castor.builder.field-naming.old = false
</pre>
#
org.exolab.castor.builder.field-naming.old=true

2.2.1.2. Source generation & Java 5.0

1. Since release 1.0.2, the Castor source generator supports the optional the generation of Java 5.0 compliant
code.

2. With release 1.3, the XML code generator will generate Java 5.0 compliant code by default.

With support for Java 5.0 enabled, the generated code will support the following Java 5.0-specific artifacts:

• Use of parameterized collections, e.g. ArrayList<String>.

• Use of @Override annotations with the generated methods that require it.

• Use of @SuppressWarnings with "unused" method parameters on the generated methods that needed it.

• Added "enum" to the list of reserved keywords.

To disable this feature (on by default), please amend the following property in your custom
castorbuilder.properties file:

Castor (1.3.3) 63

1XML Schema is a W3C Recommendation
2Castor supports the XML Schema 1.0 Second Edition

Specifies whether the sources generated should be source compatible with
Java 1.4 or Java 5.0. Legal values are "1.4" and "5.0". When "5.0" is
selected, generated source will use Java 5 features such as generics and
annotations.
Defaults to "5.0".
#
org.exolab.castor.builder.javaVersion=5.0

2.2.2. Introduction

Castor's Source Code Generator creates a set of Java classes which represent an object model for an XML
Schema (W3C XML Schema 1.0 Second Edition, Recommendation), as well as the necessary Class Descriptors
used by the marshaling framework to obtain information about the generated classes.

Note

The generated source files will need to be compiled. A later release may add an Ant taskdef to
handle this automatically.

2.2.3. Invoking the XML code generator

The XML code generator can be invoked in many ways, including by command line, via an Ant task and via
Maven. Please follow the below links for detailed instructions on each invocation mode.

• Section 2.5.3, “Command line”

• Section 2.5.1, “Ant task definition”

• Maven plugin for Castor XML

2.2.4. XML Schema

The input file for the source code generator is an XML schema1footnote>. The currently supported version is
the W3C XML Schema 1.0, Second Edition 2. For more information about XML schema support, check
Section 2.6, “XML schema support”.

2.3. Properties

2.3.1. Overview

Please find below a list of properties that can be configured through the builder configuration properties, as
defined in either the default or a custom XML code generator configuration file. These properties allow you to
control various advanced options of the XML source generator.

XML code generation

Castor (1.3.3) 64

../xml-framework.html
http://www.w3.org
http://www.w3.org/TR/XMLschema-1

Table 2.1. <column> - Definitions

Option Description Values Default Since version

org.exolab.castor.builder.javaVersionCompliance with
Java version

1.4/5.0 1.4 1.0.2

org.exolab.castor.builder.forceJava4EnumsForces the code
generator to create

'old' Java 1.4
enumeration classes

even in Java 5
mode.

true/false false 1.1.3

org.exolab.castor.builder.boundpropertiesGeneration of
bound properties

true/false false 0.8.9

org.exolab.castor.builder.javaclassmappingClass generation
mode

element/type element 0.9.1

org.exolab.castor.builder.superclassGlobal super class
(for all classes

generated)

Any valid class
name

- 0.8.9

org.exolab.castor.builder.nspackagesXML namespace to
package name

mapping

A series of
mappings

- 0.8.9

org.exolab.castor.builder.equalsmethodGeneration of
equals/hashCode()

method

true/false false 0.9.1

org.exolab.castor.builder.useCycleBreakerUse of cycle
breaker code in

generated
equals/hashCode()

method

true/false true 1.3.2

org.exolab.castor.builder.primitivetowrapperGeneration of
Object wrappers

instead of primitives

true/false false 0.9.4

org.exolab.castor.builder.automaticConflictResolutionSpecifies whether
automatic class
name conflict

resolution should
be used or not

true/false false 1.1.1

org.exolab.castor.builder.extraCollectionMethodsSpecifies whether
extra (additional)
methods should be

created for
collection-style

fields. Set this to
true if you want
your code to be

true/false false 0.9.1

XML code generation

Castor (1.3.3) 65

Option Description Values Default Since version

more compatible
with Castor JDO or

other persistence
frameworks.

org.exolab.castor.builder.jclassPrinterFactoriesEnlists the available
modes for (J)Class

printing during
XML code
generation.

org.exolab.castor.builder.printing.WriterJClassPrinterFactory/
org.exolab.castor.builder.printing.TemplateJClassPrinterFactory

n/a 1.2.1

org.exolab.castor.builder.extraDocumentationMethodsspecifying whether
extra

members/methods
for extracting XML

schema
documentation
should be made

available.

true/false false 1.2

2.3.2. Customization - Lookup mechanism

By default, the Castor XML code generator will look for such a property file in the following places:

1. If no custom property file is specified, the Castor XML code generator will use the default builder
configuration properties at org/exolab/castor/builder/castorbuilder.properties as shipped as part of
the XML code generator JAR.

2. If a file named castorbuilder.properties is available on the CLASSPATH, the Castor XML code
generator will use each of the defined property values to override the default value as defined in the default
builder configuration properties. This file is commonly referred to as a custom builder configuration file.

2.3.3. Detailed descriptions

2.3.3.1. Source generation & Java 5.0

As of Castor 1.0.2, the Castor source generator now supports the generation of Java 5.0 compliant code. The
generated code - with the new feature enabled - will make use of the following Java 5.0-specific artifacts:

• Use of parameterized collections, e.g. ArrayList<String>.

• Use of @Override annotations with the generated methods that require it.

• Use of @SupressWarnings with "unused" method parameters on the generated methods that needed it.

• Added "enum" to the list of reserved keywords.

To enable this feature (off by default), please uncomment the following property in your custom
castorbuilder.properties file:

XML code generation

Castor (1.3.3) 66

This property specifies whether the sources generated
should comply with java 1.4 or 5.0; defaults to 1.4
org.exolab.castor.builder.javaVersion=5.0

2.3.3.2. SimpleType Enumerations

In previous versions, castor only supported (un)marshalling of "simple" java5 enums, meaning enums where all
facet values are valid java identifiers. In these cases, every enum constant name can be mapped directly to the
xml value. See the following example:

<xs:simpleType name="AlphabeticalType">
<xs:restriction base="xs:string">
<xs:enumeration value="A"/>
<xs:enumeration value="B"/>
<xs:enumeration value="C"/>

</xs:restriction>
</xs:simpleType>

public enum AlphabeticalType {
A, B, C

}

<root>
<AlphabeticalType>A</AlphabeticalType>

</root>

So if there is at least ONE facet that cannot be mapped directly to a valid java identifier, we need to extend the
enum pattern. Examples for these cases are value="5" or value="-s". Castor now introduces an extended
pattern, similar to the jaxb2 enum handling. The actual value of the enumeration facet is stored in a private
String property, the name of the enum constant is translated into a valid identifier. Additionally, some
convenience methods are introduced, details about these methods are described after the following example:

<xs:simpleType name="CompositeType">
<xs:restriction base="xs:string">
<xs:enumeration value="5"/>
<xs:enumeration value="10"/>

</xs:restriction>
</xs:simpleType>

public enum CompositeType {
VALUE_5("5"),
VALUE_10("10");

private final java.lang.String value;

private CompositeType(final java.lang.String value) {
this.value = value;

}

public static CompositeType fromValue(final java.lang.String value) {
for (CompositeType c: CompositeType.values()) {

if (c.value.equals(value)) {
return c;

}
}
throw new IllegalArgumentException(value);

XML code generation

Castor (1.3.3) 67

}

public java.lang.String value() {
return this.value;

}

public java.lang.String toString() {
return this.value;

}
}

<root>
<CompositeType>5</CompositeType>

</root>

2.3.3.2.1. Unmarshalling of complex enums

Castor uses the static void fromValue(String value) method to retrieve the correct instance from the value in
the XML input file. In our example, the input is "5", fromValue returns CompositeType.VALUE_5.

2.3.3.2.2. Marshalling of complex enums

Currently, we have to distinguish between enums with a class descriptor and the ones without. If you are using
class descriptors, the EnumerationHandler uses the value() method to write the xml output.

If no descriptor classes are available, castor uses per default the toString() method to marshall the value. In
this case, the override of the java.lang.Enum.toString() method is mandatory, because
java.lang.Enum.toString() returns the NAME of the facet instead of the VALUE. So in our example,
VALUE_10 would be returned instead of "10". To avoid this, castor expects an implementation of toString()

that returns this.value.

2.3.3.2.3. Source Generation of complex enums

If the java version is set to "5.0", the new default behavior of castor is to generate complex java5 enums for
simpleType enumerations, as described above. In java 1.4 mode, nothing has changed and the old style
enumeration classes using a HashMap are created.

Users, who are in java5 mode and still want to use the old style java 1.4 classes, can force this by setting the
new org.exolab.castor.builder.forceJava4Enums property to true as follows:

Forces the code generator to create 'old' Java 1.4 enumeration classes instead
of Java 5 enums for xs:simpleType enumerations, even in Java 5 mode.
#
Possible values:
- false (default)
- true
org.exolab.castor.builder.forceJava4Enums=false

2.3.3.3. Bound Properties

Bound properties are "properties" of a class, which when updated the class will send out a
java.beans.PropertyChangeEvent to all registered java.beans.PropertyChangeListeners.

To enable bound properties, please add a property definition to your custom builder configuration file as
follows:

To enable bound properties uncomment the following line. Please

XML code generation

Castor (1.3.3) 68

note that currently *all* fields will be treated as bound properties
when enabled. This will change in the future when we introduce
fine grained control over each class and it's properties.
#
org.exolab.castor.builder.boundproperties=true

When enabled, all properties will be treated as bound properties. For each class that is generated a
setPropertyChangeListener method is created as follows:

/**
* Registers a PropertyChangeListener with this class.
* @param pcl The PropertyChangeListener to register.
**/

public void addPropertyChangeListener (java.beans.PropertyChangeListener pcl)
{

propertyChangeListeners.addElement(pcl);
} //-- void addPropertyChangeListener

Whenever a property of the class is changed, a java.beans.PropertyChangeEvent will be sent to all registered
listeners. The property name, the old value and the new value will be set in the
java.beans.PropertyChangeEvent.

Note
To prevent unnecessary overhead, if the property is a collection, the old value will be null.

2.3.3.4. Class Creation/Mapping

The source generator can treat the XML Schema structures such as <complexType> and <element> in two main
ways. The first, and current default method is called the "element" method. The other is called the "type"
method.

Table 2.2. <column> - Definitions

Method Explanation

'element'
The "element" method creates classes for all elements
whose type is a <complexType>. Abstract classes are
created for all top-level <complexType>s. Any
elements whose type is a top-level type will have a
new class create that extends the abstract class which
was generated for that top-level complexType.

Classes are not created for elements whose type is a
<simpleType>.

'type'
The "type" method creates classes for all top-level
<complexType>s, or elements that contain an
"anonymous" (in-lined) <complexType>.

Classes will not be generated for elements whose type
is a top-level type.

XML code generation

Castor (1.3.3) 69

To change the "method" of class creation, please add the following property definition to your custom builder
configuration file:

Java class mapping of <xsd:element>'s and <xsd:complexType>'s
#
org.exolab.castor.builder.javaclassmapping=type

Please note that setting this property will not affect class creation when the defaultBindingType is explicitely
used in a binding file. In that case, the value set there will take precedence.

2.3.3.5. Setting a super class

The source generator enables the user to set a super class to all the generated classes (of course, class
descriptors are not affected by this option). Please note that, though the binding file, it is possible to define a
super class for individual classes

To set the global super class, please add the following property definition to your custom builder configuration
file:

This property allows one to specify the super class of *all*
generated classes
#
org.exolab.castor.builder.superclass=com.xyz.BaseObject

2.3.3.6. Mapping XML namespaces to Java packages

An XML Schema instance is identified by a namespace. For data-binding purposes, especially code generation
it may be necessary to map namespaces to Java packages.

This is needed for imported schema in order for Castor to generate the correct imports during code generation
for the primary schema.

To allow the mapping between namespaces and Java packages , edit the castorbuilder.properties file :

XML namespace mapping to Java packages
#
#org.exolab.castor.builder.nspackages=\

http://www.xyz.com/schemas/project=com.xyz.schemas.project,\
http://www.xyz.com/schemas/person=com.xyz.schemas.person

2.3.3.7. Generate equals()/hashCode() method

Since version: 0.9.1

The Source Generator can override the equals() and hashCode() method for the generated objects.

To have equals() and hashCode() methods generated, override the following property in your custom
castorbuilder.properties file:

Set to true if you want to have an equals() and
hashCode() method generated for each generated class;
false by default
org.exolab.castor.builder.equalsmethod=true

XML code generation

Castor (1.3.3) 70

2.3.3.8. Use CycleBreaker for generation of equals()/hashcode() methods.

Since version: 1.3.2

Specifies whether cycle breaker code should be added to generated methods equals() and hashcode().

Property specifying whether cycle breaker code should be added
to generated methods 'equals' and 'hashcode'.
#
Possible values:
- true (default)
- false
#
<pre>
org.exolab.castor.builder.useCycleBreaker
</pre>
org.exolab.castor.builder.useCycleBreaker=true

2.3.3.9. Maps java primitive types to wrapper object

Since version 0.9.4

It may be convenient to use java objects instead of primitives, the Source Generator provides a way to do it.
Thus the following mapping can be used:

• boolean to java.lang.Boolean

• byte to java.lang.Byte

• double to java.lang.Double

• float to java.lang.Float

• int and integer to java.lang.Integer

• long to java.lang.Long

• short to java.lang.Short

To enable this property, edit the castor builder.properties file:

Set to true if you want to use Object Wrappers instead
of primitives (e.g Float instead of float).
false by default.
#org.exolab.castor.builder.primitivetowrapper=false

2.3.3.10. Automatic class name conflict resolution

Since version 1.1.1

With this property enabled, the XML code generator will use a new automatic class name resolution mode that
has special logic implemented to automatically resolve class name conflicts.

This new mode deals with various class name conflicts where previously a binding file had to be used to
resolve these conflicts manually.

XML code generation

Castor (1.3.3) 71

To enable this feature (turned off by default), please add the following property definitio to your custom
castorbuilder.properties file:

Specifies whether automatic class name conflict resolution
should be used or not; defaults to false.
#
org.exolab.castor.builder.automaticConflictResolution=true

2.3.3.11. Extra collection methods

Specifies whether extra (additional) methods should be created for collection-style fields. Set this to true if
you want your code to be more compatible with Castor JDO (or other persistence frameworks in general).

By setting this property to true, additional getter/setter methods for the field in question, such as get/set by
reference and set as copy methods, will be added. In order to have these additional methods generated, please
override the following code generator property in a custom castorbuilder.properties as shown:

Enables generation of extra methods for collection fields, such as get/set by
reference and set as copy. Extra methods are in addition to the usual
collection get/set methods. Set this to true if you want your code to be
more compatible with Castor JDO.
#
Possible values:
- false (default)
- true
org.exolab.castor.builder.extraCollectionMethods=true

2.3.3.12. Class printing

As of release 1.2, Castor supports the use of Velocity-based code templates for code generation. For the time
being, Castor will support two modes for code generation, i.e. the new Velocity-based and an old legacy mode.
Default will be the legacy mode; this will be changed with a later release of Castor.

In order to use the new Velocity-based code generation, please call the method
setJClassPrinterType(String) on org.exolab.castor.builder.SourceGenerator with a value of
velocity.

As we consider the code stable enough for a major release, we do encourage users to use the new
Velocity-based mode and to provide us with (valuable) feedback.

Please note that we have changed the mechanics of changing the JClass printing type between releases 1.2 and
1.2.1.

2.3.3.13. Extra documentation methods

As of release 1.2, the Castor XML code generator - if configured as shown below - now supports generation of
additional methods to allow programmatic access to <xs:documentation> elements for top-level type/element
definitions as follows:

public java.lang.String getXmlSchemaDocumentation(final java.lang.String source);
public java.util.Map getXmlSchemaDocumentations();

In order to have these additional methods generated as shown above, please override the following code

XML code generation

Castor (1.3.3) 72

generator property in a custom castorbuilder.properties as shown:

Property specifying whether extra members/methods for extracting XML schema
documentation should be made available; defaults to false
org.exolab.castor.builder.extraDocumentationMethods=true

2.4. Custom bindings

This section defines the Castor XML binding file and describes - based upon the use of examples - how to use
it.

The default binding used to generate the Java Object Model from an XML schema may not meet your
expectations. For instance, the default binding doesn't deal with naming collisions that can appear because
XML Schema allows an element declaration and a complexType definition to use the same name. The source
generator will attempt to create two Java classes with the same qualified name. However, the latter class
generated will simply overwrite the first one.

Another example of where the default source generator binding may not meet your expectations is when you
want to change the default datatype binding provided by Castor or when you want to add validation rules by
implementing your own validator and passing it to the Source Generator.

2.4.1. Binding File

The binding declaration is an XML-based language that allows the user to control and tweak details about
source generation for the generated classes. The aim of this section is to provide an overview of the binding file
and a definition of the several XML components used to define this binding file.

A more in-depth presentation will be available soon in the Source Generator User Document (PDF).

2.4.1.1. <binding> element

<binding
defaultBindingType = (element|type)>
(include*,
package*,
namingXML?,
elementBinding*,
attributeBinding,
complexTypeBinding,
groupBinding)

</binding>

The binding element is the root element and contains the binding information.

Table 2.3. <column> - Definitions

Name Description Default Required ?

defaultBindingType Controls the class
creation mode for details
on the available modes.

Please note that the mode
specified in this attribute

element No

XML code generation

Castor (1.3.3) 73

Name Description Default Required ?

will override the binding
type specified in the

castorbuilder.properties

file.

2.4.1.2. <include> element

<include
URI = xsd:anyURI/>

This element allows you to include a binding declaration defined in another file. This allows reuse of binding
files defined for various XML schemas.

Attributes of <include>

URI:
The URI of the binding file to include.

2.4.1.3. <package> element

<package>
name = xsd:string
(namespace|schemaLocation) = xsd:string>

</package>

Table 2.4. <package> - Definitions

Name Description

name A fully qualified java package name.

namespace An XML namespace that will be mapped to the
package name defined by the name element.

schemaLocation A URL that locates the schema to be mapped to the
package name defined by the name element.

The targetNamespace attribute of an XML schema identifies the namespace in which the XML schema
elements are defined. This language namespace is defined in the generated Java source as a package
declaration. The <package/> element allows you to define the mapping between an XML namespace and a
Java package.

Moreover, XML schema allows you to factor the definition of an XML schema identified by a unique
namespace by including several XML schemas instances to build one XML schema using the <xsd:include/>

element. Please make sure you understand the difference between <xsd:include/> and <xsd:import/>.
<xsd:include/> # relies on the URI of the included XML schema. This element allows you to keep the
structure hierarchy defined in XML schema in a single generated Java package. Thus the binding file allows
you to define the mapping between a schemaLocation attribute and a Java package.

XML code generation

Castor (1.3.3) 74

2.4.1.4. <namingXML> element

<namingXML>
(elementName,complexTypeName,modelGroupName)

</namingXML>

<elementName|complexTypeName|modelGroupName>
(prefix?, suffix?) = xsd:string

</elementName|complexTypeName|modelGroupName>

Table 2.5. <namingXML> - Definitions

Name Description

prefix The prefix to add to the names of the generated
classes.

suffix The suffix to append to the the names of the
generated classes.

One of the aims of the binding file is to avoid naming collisions. Indeed, XML schema allows <element>s and
<complexType>s to share the same name, resulting in name collisions when generating sources. Defining a
binding for each element and complexType that share the same name is not always a convenient solution (for
instance the BPML XML schema and the UDDI v2.0 XML schema use the same names for top-level
complexTypes and top-level elements).

The main aim of the <namingXML/> element is to define default prefices and suffices for the names of the
classes generated for an <element>, a <complexType> or a model group definition.

Note

It is not possible to control the names of the classes generated to represent nested model groups
(all, choice, and sequence).

2.4.1.5. <componentBinding> element

<elementBinding|attributeBinding|complexTypeBinding|groupBinding
name = xsd:string>
((java-class|interface|member|contentMember),
elementBinding*,
attributeBinding*,
complexTypeBinding*,
groupBinding*)

</elementBinding|attributeBinding|complexTypeBinding|groupBinding>

Table 2.6. <componentBinding> - Definitions

Name Description

name The name of the XML schema component for which
we are defining a binding.

XML code generation

Castor (1.3.3) 75

These elements are the tenets of the binding file since they contain the binding definition for an XML schema
element, attribute, complex type and model group definition. The first child element (<java-class/>,
<interface>, <member> or <contentMember/>) will determine the type of binding one is defining. Please note
that defining a <java-class> binding on an XML schema attribute will have absolutely no effect.

The binding file is written from an XML schema point of view; there are two distinct ways to define the XML
schema component for which we are defining a binding.

1. (XPath-style) name

2. Embedded definitions

2.4.1.5.1. Name

First we can define it through the name attribute.

The value of the name attribute uniquely identifies the XML schema component. It can refer to the top-level
component using the NCName of that component or it can use a location language based on XPath. The
grammar of that language can be defined by the following BNF:

[1]Path ::= '/'LocationPath('/'LocationPath)*
[2]LocationPath ::= (Complex|ModelGroup|Attribute|Element|Enumeration)
[3]Complex ::= 'complexType:'(NCName)
[4]ModelGroup ::= 'group:'NCName
[5]Attribute ::= '@'NCName
[6]Element ::= NCName
[7]Enumeration ::= 'enumType':(NCName)

Please note that all values for the name attribute have to start with a '/'.

2.4.1.5.2. Embedded definitions

The second option to identify an XML schema component is to embed its binding definition inside its parent
binding definition.

Considering below XML schema fragment ...

<complexType name="fooType">
<sequence>

<element name="foo" type="string" />
</sequence>

</complexType>

the following binding definitions are equivalent and identify the <element> foo defined in the top-level
<complexType> fooType.

<elementBinding name="/complexType:fooType/foo>
<member name="MyFoo" handler="mypackage.myHandler"/>

</elementBinding>

<complexTypeBinding name="/fooType">
<elementBinding name="/foo>

<member name="MyFoo" handler="mypackage.myHandler"/>
</elementBinding>

<complexTypeBinding>

XML code generation

Castor (1.3.3) 76

http://www.w3.org/TR/xpath
http://en.wikipedia.org/wiki/Backus-Naur_form
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes.html#NCName
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes.html#NCName
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes.html#NCName
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes.html#NCName
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/datatypes.html#NCName

2.4.1.6. <java-class>

<java-class
name? = xsd:string
package? = xsd:string
final? = xsd:boolean
abstract? = xsd:boolean
equals? = xsd:boolean
bound? = xsd:boolean
(implements*,extends?)

</java-class>

This element defines all the options for the class to be generated, including common properties such as class
name, package name, and so on.

Attributes of <java-class>

name:
The name of the class that will be generated.

package:
The package of the class to be generated. if set, this option overrides the mapping defined in the
<package/> element.

final:
If true, the generated class will be final.

abstract:
If true, the generated class will be abstract.

equals:
If true, the generated class will implement the equals() and hashCode() method.

bound:
If true, the generated class will implement bound properties, allowing property change notification.

For instance, the following binding definition instructs the source generator to generate a class CustomTest for
a global element named 'test', replacing the default class name Test with CustomTest.

<elementBinding name="/test">
<java-class name="CustomTest" final="true"/>

</elementBinding>

In addition to the properties listed above, it is possible to define that the class generated will extend a class
given and/or implement one or more interfaces.

For instance, the following binding definition instructs the source generator to generate a class
TestWithInterface that implements the interface org.castor.sample.SomeInterface in addition to
java.io.Serializable.

<elementBinding name="/test">
<java-class name="TestWithInterface">

<implements>org.castor.sample.SomeInterface</implements>
</java-class>

</elementBinding>

XML code generation

Castor (1.3.3) 77

The subsequent binding definition instructs the source generator to generate a class
TestWithExtendsAndInterface that implements the interface org.castor.sample.SomeInterface in addition
to java.io.Serializable, and extends from a (probably abstract) base class SomeAbstractBaseClass.

<elementBinding name="/test">
<java-class name="TestWithExtendsAndInterface">

<extends>org.castor.sample.SomeAbstractBaseClass</extends>
<implements>org.castor.sample.SomeInterface</implements>

</java-class>
</elementBinding>

The generated class SomeAbstractBaseClass will have a class signature as shown below:

...

public class TestWithExtendsAndInterface
extends SomeAbstractBaseClass
implements SomeInterface, java.io.Serializable {
...

2.4.1.7. <member> element

<member
name? = xsd:string
java-type? = xsd:string
wrapper? = xsd:boolean
handler? = xsd:string
visibility? = (public|protected|private)
collection? = (array|vector|arraylist|hashtable|collection|odmg|set|map|sortedset)
validator? = xsd:string/>

This element represents the binding for class member. It allows the definition of its name and java type as well
as a custom implementation of FieldHandler to help the Marshaling framework in handling that member.
Defining a validator is also possible. The names given for the validator and the fieldHandler must be fully
qualified.

Table 2.7. <member> - Definitions

Name Description

name The name of the class member that will be generated.

java-type Fully qualified name of the java type.

wrapper If true, a wrapper object will be generated in case the
Java type is a java primitive.

handler Fully qualified name of the custom FieldHandler to
use.

collection If the schema component can occur more than once
then this attribute allows specifying the collection to
use to represent the component in Java.

validator Fully qualified name of the FieldValidator to use.

XML code generation

Castor (1.3.3) 78

Name Description

visibility A custom visibility of the content class member
generated, with the default being public.

For instance, the following binding definition:

<elementBinding name="/root/members">
<member collection="set"/>

</elementBinding>

instructs the source generator to generate -- within a class Root -- a Java member named members using the
collection type java.util.Set instead of the default java.util.List:

public class Root {

private java.util.Set members;

...

}

The following (slightly amended) binding element:

<elementBinding name="/root/members">
<member name="memberSet" collection="set"/>

</elementBinding>

instructs the source generator to generate -- again within a class Root -- a Java member named memberSet (of
the same collection type as in the previous example), overriding the name of the member as specified in the
XML schema:

public class Root {

private java.util.Set memberSet;

...

}

2.4.1.8. <contentMember> element

<contentMember
name? = xsd:string
visiblity? = (public|protected|private)

This element represents the binding for content class member generated as a result of a mixed mode declaration
of a complex type definition. It allows the definition of its name and its visibility

name:
The name of the class member that will be generated, overriding the default name of _content.

visibility:

XML code generation

Castor (1.3.3) 79

A custom visibility of the content class member generated, with the default being public.

For a complex type definition declared to be mixed such as follows ...

<complexType name="RootType" mixed="true">
<sequence>

...
>/sequence>

>/complexType>

... the following binding definition ...

<elementBinding name="/complexType:RootType">
<contentMember name="customContentMember"/>

</elementBinding>

instructs the source generator to generate -- within a class RootType -- a Java member named
customContentMember of type java.lang.String:

public class RootType {

private java.util.String customContentMember;

...
}

2.4.1.9. <enumBinding> element

<enumBinding>
(enumDef)

</enumBinding>

<enumDef>
(enumClassName = xsd:string, enumMember*)

</enumDef>

<enumMember>
(name = xsd:string, value = xsd:string)

</enumMember>

The <enumBinding> element allows more control on the code generated for type-safe enumerations, which are
used to represent an XML Schema <simpleType> enumeration.

For instance, given the following XML schema enumeration definition:

<xs:simpleType name="durationUnitType">
<xs:restriction base='xs:string'>
<xs:enumeration value='Y' />
<xs:enumeration value='M' />
<xs:enumeration value='D' />
<xs:enumeration value='h' />
<xs:enumeration value='m' />
<xs:enumeration value='s' />

</xs:restriction>
</simpleType>

the Castor code generator would generate code where the default naming convention used during the generation
would overwrite the first constant definition for value 'M' with the one generated for value 'm'.

XML code generation

Castor (1.3.3) 80

The following binding definition defines -- through the means of an <enumMember> definition for the
enumeration value 'M' -- a special binding for this value:

<enumBinding name="/enumType:durationUnitType">
<enum-def>
<enumMember>
<value>M</value>
<javaName>CUSTOM_M</javaName>

</enumMember>
</enum-def>

</enumBinding>

and instructs the source generator to generate -- within a class DurationUnitType -- a constant definition
named CUSTOM_M for the enumeration value M.

2.4.1.10. Not implemented yet

2.4.1.10.1. <javadoc>

The <javadoc> element allows one to enter the necessary JavaDoc representing the generated classes or
members.

2.4.1.10.2. <interface> element

<interface>
name = xsd:string

</interface>

• name:The name of the interface to generate.

This element specifies the name of the interface to be generated for an XML schema component.

2.4.2. Class generation conflicts

As mentioned previously, you use a binding file for two main reasons:

• To customize the Java code generated

• To avoid class generation conflicts.

For the latter case, you'll (often) notice such collisions by looking at generated Java code that frequently does
not compile. Whilst this is relatively easy for small(ish) XML schema(s), this task gets tedious for more
elaborate XML schemas. To ease your life in the context of this 'collision detection', the Castor XML code
generator provides you with a few advanced features. The following sections cover these features in detail.

2.4.2.1. Collision reporting

During code generation, the Castor XML code generator will run into situations where a class (about to be
generated, and as such about to be written to the file system) will overwrite an already existing class. This, for
example, is the case if within one XML schema there's two (local) element definitions within separate complex
type definitions with the same name. In such a case, Castor will emit warning messages that inform the user
that a class will be overwritten.

XML code generation

Castor (1.3.3) 81

As of release 1.1, the Castor XML code generator supports two reporting modes that allow different levels of
control in the event of such collisions, warnViaConsoleDialog and informViaLog mode.

Table 2.8. <column> - Definitions

Mode Description Since

warnViaConsoleDialog Emits warning messages to stdout

and ask the users whether to
continue.

0.9

informViaLog Emits warning messages only via
the standard logger.

1.1

Please select the reporting mode of your choice according to your needs, the default being
warnViaConsoleDialog. Please note that the informViaLog reporting mode should be the preferred choice
when using the XML code generator in an automated environment.

In general, the warning messages produced are very useful in assisting you in your creation of the binding file,
as shown in below example for the warnViaConsoleDialog mode:

Warning: A class name generation conflict has occurred between element
'/Data/OrderReceipt/LineItem' and element '/Data/PurchaseOrder/LineItem'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'/Data/OrderReceipt/LineItem' and element '/Data/PurchaseOrder/LineItem'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'/Data/OrderReceipt/LineItem' and element '/Data/PurchaseOrder/LineItem'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'complexType:ReceiptLineItemType/Sku' and element 'complexType:LineItemType/Sku'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'complexType:ReceiptLineItemType/Sku' and element 'complexType:LineItemType/Sku'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'complexType:ReceiptLineItemType/Sku' and element 'complexType:LineItemType/Sku'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

2.4.2.1.1. Reporting mode 'warnViaConsoleDialog'

As already mentioned, this mode emits warning messages to stdout, and asks you whether you want to
continue with the code generation or not. This allows for very fine grained control over the extent of the code
generation.

Please note that there is several setter methods on the org.exolab.castor.builder.SourceGenerator that
allow you to fine-tune various settings for this reporting mode. Genuinely, we believe that for automated code
generation through either Ant or Maven, the new informViaLog is better suited for these needs.

2.4.2.2. Automatic collision resolution

As of Castor 1.1.1, support has been added to the Castor XML code generator for a (nearly) automatic conflict
resolution. To enable this new mode, please override the following property in your custom property file as
shown below:

XML code generation

Castor (1.3.3) 82

Specifies whether automatic class name conflict resolution
should be used or not; defaults to false.
#
org.exolab.castor.builder.automaticConflictResolution=true

As a result of enabling automatic conflict resolution, Castor will try to resolve such name collisions
automatically, using one of the following two strategies:

Table 2.9. <column> - Definitions

Name Description Since Default

xpath Prepends an XPATH
fragment to make the
suggested Java name

unique.

1.1.1 Yes

type Appends type
information to the

suggested Java name.

1.1.1 No

2.4.2.2.1. Selecting the strategy

For selecting one of the two strategies during XML code generation, please see the documentation for the
following code artifacts:

• setClassNameConflictResolver on org.exolab.castor.builder.SourceGenerator

• org.exolab.castor.builder.SourceGeneratorMain"

• Ant task definition

• Maven plugin for Castor XML

In order to explain the modus operandi of these two modes, please assume two complex type definitions AType

and BType in an XML schema, with both of them defining a local element named c.

<xs:complexType name="AType">
<xs:sequence>

<xs:element name="c" type="CType1" />
</xs:sequence>

</xs:complexType>

<xs:complexType name="BType">
<xs:sequence>

<xs:element name="c" type="CType2" />
</xs:sequence>

</xs:complexType>

Without automatic collision resolution enabled, Castor will create identically named classes C.java for both
members, and one will overwrite the other. Please note the different types for the two c element definitions,
which requires two class files to be generated in order not to lose this information.

2.4.2.2.2. 'XPATH' strategy

XML code generation

Castor (1.3.3) 83

This strategy will prepend an XPATH fragment to the default Java name as derived during code generation, the
default name (frequently) being the name of the XML schema artifact, e.g. the element name of the complex
type name. The XPATH fragment being prepended is minimal in the sense that the resulting rooted XPATH is
unique for the XML schema artifact being processed.

With automatic collision resolution enabled and the strategy 'XPATH' selected, Castor will create the following
two classes, simply prepending the name of the complex type to the default element name:

• ATypeC.java

• BTypeC.java

2.4.2.2.3. 'TYPE' strategy

This strategy will append 'type' information to the default Java name as derived during code generation, the
default name (frequently) being the name of the XML schema artifact, e.g. the element name of the complex
type name.

With automatic collision resolution enabled and the strategy 'TYPE' selected, Castor will create the following
two classes, simply appending the name of the complex type to the default element name (with a default 'By'
inserted):

• CByCType1.java

• CByCType2.java

To override the default 'By' inserted between the default element name and the type information, please override
the following property in your custom property file as shown below:

Property specifying the 'string' used in type strategy to be inserted
between the actual element name and the type name (during automatic class name
conflict resolution); defaults to 'By'.
org.exolab.castor.builder.automaticConflictResolutionTypeSuffix=ByBy

2.4.2.2.4. Conflicts covered

The Castor XML code generator, with automatic collision resolution enabled, is capable of resolving the
following collisions automatically:

• Name of local element definition same as name of a global element

• Name of local element definition same as name of another local element definition.

Note

Please note that collision resolution for a local to local collision will only take place for the second
local element definition encountered (and subsequent ones).

2.5. Invoking the XML code generator

XML code generation

Castor (1.3.3) 84

2.5.1. Ant task

An alternative to using the command line as shown in the previous section, the Castor Source Generator Ant
Task can be used to call the source generator for class generation. The only requirement is that the
castor-<version>-codegen-antask.jar must additionally be on the CLASSPATH.

2.5.1.1. Specifying the source for generation

As shown in the subsequent table, there's multiple ways of specifying the input for the Castor code generator.
At least one input source has to be specified.

Table 2.10. <column> - Definitions

Attribute Description Required Since

file The XML schema, to be
used as input for the

source code generator.

No. -

dir Sets a directory such that
all XML schemas in this
directory will have code

generated for them.

No -

schemaURL URL to an XML schema,
to be used as input for the

source code generator.

No. 1.2

In addition, a nested <fileset> can be specified as the source of input. Please refer to the samples shown below.

2.5.1.2. Parameters

Please find below the complete list of parameters that can be set on the Castor source generator to fine-tune the
execution behavior.

Table 2.11. Ant task properties

Attribute Description Required Since

package The default package to be
used during source code

generation.

No; if not given, all
classes will be placed in

the root package.

-

todir The destination directory
to be used during source
code generation. In this
directory all generated

Java classes will be
placed.

No -

bindingfile A Castor source generator
binding file.

No -

lineseparator Defines whether to use No; if not set, system -

XML code generation

Castor (1.3.3) 85

Attribute Description Required Since

Unix- or Windows- or
Mac-style line separators

during source code
generation. Possible

values are: 'unix', 'win' or
'mac'.

property 'line.separator' is
used instead.

types Defines what collection
types to use (Java 1 vs.

Java 2). Possible values:
'vector', 'arraylist' (aka

'j2') or 'odmg'.

No; if not set, the default
collection used will be

Java 1 type

-

verbose Whether to output any
logging messages as
emitted by the source

generator

No -

warnings Whether to suppress any
warnings as otherwise
emitted by the source

generator

No -

nodesc If used, instructs the
source generator not to
generate *Descriptor

classes.

No -

generateMapping If used, instructs the
source generator to

(additionally) generate a
mapping file.

No -

nomarshal If specified, instructs the
source generator not to
create (un)marshalling

methods within the Java
classes generated.

No -

caseInsensitive If used, instructs the
source generator to
generate code for

enumerated type lookup
in a case insensitive

manner.

No -

sax1 If used, instructs the
source generator to

generate SAX-1
compliant code.

No -

generateImportedSchemas If used, instructs the
source generator to
generate code for

imported schemas as

No -

XML code generation

Castor (1.3.3) 86

Attribute Description Required Since

well.

nameConflictStrategy If used, sets the name
conflict strategy to use

during XML code
generation; possible

values are
'warnViaConsoleDialog'

and 'informViaLog'.

No -

properties Location of file defining
a set of properties to be
used during source code

generation. This overrides
the default mechanisms

of configuring the source
generator through a

castorbuilder.properties

(that has to be placed on
the CLASSPATH)

No -

automaticConflictStrategy If used, sets the name
conflict resolution

strategy used during
XML code generation;

possible values are 'type'
and 'xpath' (default being

'xpath').

No -

jClassPrinterType Sets the mode for printing
JClass instances during
XML code generation;

possible values are
'standard' and 'velocity'

(default being
'standard').

No 1.2.1

generateJdoDescriptors If used, instructs the
source generator to
generate JDO class
descriptors as well;

default is false.

No 1.3

resourceDestination Sets the destination
directory for (generated)

resources, e.g.
.castor.cdr files.

No 1.3.1

2.5.1.3. Examples

2.5.1.3.1. Using a file

XML code generation

Castor (1.3.3) 87

Below is an example of how to use this task from within an Ant target definition named 'castor:gen:src':

<target name="castor:gen:src" depends="init"
description="Generate Java source files from XSD.">

<taskdef name="castor-srcgen"
classname="org.castor.anttask.CastorCodeGenTask"
classpathref="castor.class.path" />

<mkdir dir="generated" />
<castor-srcgen file="src/schema/sample.xsd"

todir="generated-source"
package="org.castor.example.schema"
types="j2"
warnings="true" />

</target>

2.5.1.3.2. Using an URL

Below is the same sample as above, this time using the url attribute as the source of input instead:

<target name="castor:gen:src" depends="init"
description="Generate Java source files from XSD.">

<taskdef name="castor-srcgen"
classname="org.castor.anttask.CastorCodeGenTask"
classpathref="castor.class.path" />

<mkdir dir="generated" />
<castor-srcgen schemaURL="http://some.domain/some/path/sample.xsd"

todir="generated-source"
package="org.castor.example.schema"
types="j2"
warnings="true" />

</target>

2.5.1.3.3. Using a nested <fileset>

Below is the same sample as above, this time using the url attribute as the source of input instead:

<target name="castor:gen:src" depends="init"
description="Generate Java source files from XSD.">

<taskdef name="castor-srcgen"
classname="org.castor.anttask.CastorCodeGenTask"
classpathref="castor.class.path" />

<mkdir dir="generated" />
<castor-srcgen todir="generated-source"

package="org.castor.example.schema"
types="j2"
warnings="true" >

<fileset dir="${basedir}/src/schema">
<include name="**/*.xsd"/>

</fileset>
</castor-srcgen>

</target>

2.5.2. Maven 2 plugin

For those of you working with Maven 2 instead of Ant, the Maven 2 plugin for Castor can be used to integrate
source code generation from XML schemas with the Castor XML code generator as part of the standard Maven
build life-cycle. The following sections show how to configure the Maven 2 Castor plugin and hwo to instruct

XML code generation

Castor (1.3.3) 88

Maven 2 to generate sources from your XML schemas.

2.5.2.1. Configuration

To be able to start source code generation from XML schema from within Maven, you will have to configure
the Maven 2 Castor plugin as follows:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>castor-maven-plugin</artifactId>
<version>2.0</version>

</plugin>

Above configuration will trigger source generation using the default values as explained at the Castor plugin
page, assuming that the XML schema(s) are located at src/main/castor, and code will be saved at
target/generated-sources/castor. When generating sources for multiple schemas at the same time, you can
put namespace to package mappings into src/main/castor/castorbuilder.properties.

To e.g. change some of these default locations, please add a <configuration> section to the plugin configuration
as follows:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>castor-maven-plugin</artifactId>
<version>2.0</version>
<configuration>

<schema>src/main/resources/org/exolab/castor/builder/binding/binding.xsd</schema>
<packaging>org.exolab.castor.builder.binding</packaging>
<properties>src/main/resources/org/exolab/castor/builder/binding.generation.properties</properties>

</configuration>
</plugin>

Details on the available configuration properties can be found here.

By default, the Maven Castor plugin has been built and tested against a particular version of Castor. To switch
to a newer version of Castor (not the plugin itself), please use a <dependencies> section as shown below to
point the plugin to e.g. a newer version of Castor:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>castor-maven-plugin</artifactId>
<version>2.0</version>
<dependencies>
<dependency>
<groupId>org.codehaus.castor</groupId>
<artifactId>castor</artifactId>
<version>1.3.1-SNAPSHOT</version>

</dependency>
</dependencies>

</plugin>

2.5.2.2. Integration into build life-cycle

To integrate source code generation from XML schema into your standard build life-cycle, you will have to add
an <executions> section to your standard plugin configuration as follows:

<plugin>
<groupId>org.codehaus.mojo</groupId>

XML code generation

Castor (1.3.3) 89

http://mojo.codehaus.org/castor-maven-plugin/howto.html
http://mojo.codehaus.org/castor-maven-plugin/howto.html
http://mojo.codehaus.org/castor-maven-plugin/generate-mojo.html

<artifactId>castor-maven-plugin</artifactId>
<version>2.0</version>
<executions>

<execution>
<goals>

<goal>generate</goal>
</goals>

</execution>
</executions>

</plugin>

2.5.2.3. Example

Below command shows how to instruct Maven (manually) to generate Java sources from the XML schemas as
configured above.

> mvn castor:generate

2.5.3. Command line

2.5.3.1. First steps

java org.exolab.castor.builder.SourceGeneratorMain -i foo-schema.xsd \
-package com.xyz

This will generate a set of source files from the the XML Schema foo-schema.xsd and place them in the
package com.xyz.

To compile the generated classes, simply run javac or your favorite compiler:

javac com/xyz/*.java

Created class will have marshal and unmarshal methods which are used to go back and forth between XML
and an Object instance.

2.5.3.2. Source Generator - command line options

The source code generator has a number of different options which may be set. Some of these are done using
the command line and others are done using a properties file located by default at
org/exolab/castor/builder/castorbuilder.properties.

2.5.3.2.1. Specifying the input source

There's more than one way of specifying the input for the Castor code generator. At least one input source must
be specified.

Table 2.12. Input sources

Option Args Description Version

i filename The input XML Schema
file

-

XML code generation

Castor (1.3.3) 90

Option Args Description Version

is URL URL of an XML Schema 1.2 and newer

2.5.3.2.2. Other command Line Options

Table 2.13. Other command line options

Option Arguments Description Optional?

-package package-name The package for the
generated source.

Optional

-dest path The destination directory
in which to create the
generated source

Optional

-line-separator unix | mac | win Sets the line separator
style for the desired
platform. This is useful if
you are generating source
on one platform, but will
be compiling/modifying
on another platform.

Optional

-types type-factory Sets which type factory to
use. This is useful if you
want JDK 1.2 collections
instead of JDK 1.1 or if
you want to pass in your
own FieldInfoFactory
(see Section 2.5.3.2.2.1,
“Collection Types”).

Optional

-h Shows the help/usage
information.

Optional

-f Forces the source
generator to suppress all
non-fatal errors, such as
overwriting pre-existing
files.

Optional

-nodesc Do not generate the class
descriptors

Optional

-gen-mapping (Additionally) Generate a
mapping file.

Optional

-nomarshall Do not generate the
marshaling framework
methods (marshal,
unmarshal, validate)

Optional

-testable Generate the extra
methods used by the CTF

Optional

XML code generation

Castor (1.3.3) 91

Option Arguments Description Optional?

(Castor Testing
Framework)

-sax1 Generate marshaling
methods that use the
SAX1 framework
(default is false).

Optional

-binding-file <<binding file name>>. Configures the use of a
Binding File to allow
finely-grained control of
the generated classes

Optional

-generateImportedSchemas Generates sources for
imported XML Schemas
in addition to the schema
provided on the command
line (default is false).

Optional

-case-insensitive The generated classes
will use a case insensitive
method for looking up
enumerated type values.

Optional

-verbose Enables extra diagnostic
output from the source
generator

Optional

-nameConflictStrategy <<conflict strategy
name>>

Sets the name conflict
strategy to use during
XML code generation

Optional

-fail Instructs the source
generator to fail on the
first error. When you are
trying to figure out what
is failing during source
generation, this option
will help.

Optional

-classPrinter <<JClass printing
mode>>.

Specifies the JClass
printing mode to use
during XML code
generation; possible
values arestandard
(default) and velocity; if
no value is specified, the
default mode is
standard.

Optional

-gen-jdo-desc (Additionally) generate
JDO class descriptors.

Optional

-resourcesDestination <destination> An (optional) destination
for (generated) resources

Optional

XML code generation

Castor (1.3.3) 92

2.5.3.2.2.1. Collection Types

The source code generator has the ability to use the following types of collections when generating source code,
using the -type option:

Table 2.14. Collection types

Option value Type Default

-types j1 Java 1.1 java.util.Vector

-type j2 Java 1.2 java.util.Collection

-types odmg ODMG 3.0 odmg.DArray

The Java class name shown in above table indicates the default collection type that will be emitted during
generation.

You can also write your own FieldInfoFactory to handle specific collection types. All you have to do is to pass
in the fully qualified name of that FieldInfoFactory as follows:

-types com.personal.MyCoolFactory

Tip
For additional information about the Source Generator and its options, you can download the
Source Generator User Document (PDF). Please note that the use of a binding file is not dicussed
in that document.

2.6. XML schema support

Castor XML supports the W3C XML Schema 1.0 Second Edition Recommendation document (10/28/2004)
The Schema Object Model (located in the package org.exolab.castor.xml.schema) provides an in-memory
representation of a given XML schema whereas the XML code generator provides a binding between XML
schema data types and structures into the corresponding ones in Java.

The Castor Schema Object Model can read (org.exolab.castor.xml.schema.reader) and write
(org.exolab.castor.xml.schema.writer) an XML Schema as defined by the W3C recommandation. It allows you
to create and manipulate an in-memory view of an XML Schema.

The Castor Schema Object Model supports the W3C XML Schema recommendation with no limitation.
However the Source Generator does currently not offer a one to one mapping from an XML Schema
component to a Java component for every XML Schema components; some limitations exist. The aim of the
following sections is to provide a list of supported features in the Source Generator. Please keep in mind that
the Castor Schema Object Model again can handle any XML Schema without limitations.

Some Schema types do not have a corresponding type in Java. Thus the Source Generator uses Castor
implementation of these specific types (located in the org.exolab.castor.types package). For instance the
duration type is implemented directly in Castor. Remember that the representation of XML Schema datatypes
does not try to fit the W3C XML Schema specifications exactly. The aim is to map an XML Schema type to the
Java type that is the best fit to the XML Schema type.

XML code generation

Castor (1.3.3) 93

http://www.w3.org/TR/xmlschema-1/

You will find next a list of the supported XML Schema data types and structures in the Source Code Generator.
For a more detailed support of XML Schema structure and more information on the Schema Object Model,
please refer to Source Generator User Document (PDF).

2.6.1. Supported XML Schema Built-in Datatypes

The following is a list of the supported datatypes with the corresponding facets and the Java mapping type.

2.6.1.1. Primitive Datatypes

Table 2.15. Supported primitive data types

XML Schema Type Supported Facets Java mapping type

anyURI enumeration java.lang.String

base64Binary byte[]

boolean pattern boolean or java.lang.Booleana

date enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.Date

dateTime enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

java.util.Date

decimal totalDigits, fractionDigits, pattern,
whiteSpace, enumeration,

maxInclusive, maxExclusive,
minInclusive, minExclusive,

whitespaceb

java.math.BigDecimal

double enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

double or java.lang.Doublec

duration enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.Duration

float enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

float or java.lang.Floatc

gDay enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.GDay

gMonth enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.GMonth

gMonthDay enumeration, maxInclusive,
maxExclusive, minInclusive,

org.exolab.castor.types.GMonthDay

XML code generation

Castor (1.3.3) 94

XML Schema Type Supported Facets Java mapping type

minExclusive, pattern, whitespaceb

gYear enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.GYear

gYearMonth enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.GYearMonth

hexBinary byte[]

QName length, minLength, maxLength,
pattern, enumeration

java.lang.String

string length, minLength, maxLength,
pattern, enumeration, whiteSpace

java.lang.String

time enumeration, maxInclusive,
maxExclusive, minInclusive,

minExclusive, pattern, whitespaceb

org.exolab.castor.types.Time

aFor the various numerical types, the default behavior is to generate primitive types. However, if the use of wrappers is enabled by the
following line in the castorbuilder.properties file: org.exolab.castor.builder.primitivetowrapper=true then the java.lang.*

wrapper objects (as specified above) will be used instead.
b For the date/time and numeric types, the only supported value for whitespace is "collapse".

2.6.1.2. Derived Datatypes

Table 2.16. Supported derived data types

Type Supported Facets Java mapping type

byte totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

byte/java.lang.Byte c

ENTITY Not implemented

ENTITIES Not implemented

ID enumeration java.lang.String

IDREF java.lang.Object

IDREFS java.util.Vector of
java.lang.Object

int totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

int/java.lang.Integerc

integer totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,

long/java.lang.Longc

XML code generation

Castor (1.3.3) 95

Type Supported Facets Java mapping type

minExclusive, whitespaceb

language length, minLength, maxLength,
pattern, enumeration, whiteSpace

treated as a xsd:string
d

long totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

long/java.lang.Longc

Name Not implemented

NCName enumeration java.lang.String

negativeInteger totalDigits, fractionDigits, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

long/java.lang.Longc

NMTOKEN enumeration, length, maxlength,
minlength

java.lang.String

NMTOKENS java.util.Vector of
java.lang.String

NOTATION Not implemented

nonNegativeInteger totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

long/java.lang.Longc

nonPositiveInteger totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

long/java.lang.Longc

normalizedString enumeration, length, minLength,
maxLength, pattern

java.lang.String

positiveInteger totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

long/java.lang.Longc

short totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

short/java.lang.Shortc

token length, minLength, maxLength,
pattern, enumeration, whiteSpace

treated as a xsd:string
d,

unsignedByte totalDigits, fractionDigitsa,
maxExclusive, minExclusive,
maxInclusive, minInclusive,

pattern, whitespaceb

short/java.lang.Shortc

XML code generation

Castor (1.3.3) 96

Type Supported Facets Java mapping type

unsignedInt totalDigits, fractionDigitsa,
maxExclusive, minExclusive,
maxInclusive, minInclusive,

pattern, whitespaceb

long/java.lang.Longc

unsignedLong totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

java.math.BigInteger

unsignedShort totalDigits, fractionDigitsa, pattern,
enumeration, maxInclusive,

maxExclusive, minInclusive,
minExclusive, whitespaceb

int or java.lang.Integerc

aFor the integral types, the only allowed value for fractionDigits is 0.
b For the date/time and numeric types, the only supported value for whitespace is "collapse".
cFor the various numerical types, the default behavior is to generate primitive types. However, if the use of wrappers is enabled by the
following line in the castorbuilder.properties file: org.exolab.castor.builder.primitivetowrapper=true then the java.lang.*

wrapper objects (as specified above) will be generated instead.
d Currently, <xsd:language> and <xsd:token> are treated as if they were <xsd:string>.

2.6.2. Supported XML Schema Structures

Supporting XML schema structures is a constant work. The main structures are already supported with some
limitations. The following will give you a rough list of the supported structures. For a more detailed support of
XML Schema structure in the Source Generator or in the Schema Object Model, please refer to Source
Generator User Document (PDF).

Supported schema components:

• Attribute declaration (<attribute>)

• Element declaration (<element>)

• Complex type definition (<complexType>)

• Attribute group definition (<attributeGroup>)

• Model group definition (<group>)

• Model group (<all>, <choice> and <sequence>)

• Annotation (<annotation>)

• Wildcard (<any>)

• Simple type definition (<simpleType>)

2.6.2.1. Groups

Grouping support covers both model group definitions (<group>) and model groups (<all>, <choice> and
<sequence>). In this section we will label as a 'nested group' any model group whose first parent is another

XML code generation

Castor (1.3.3) 97

model group.

• For each top-level model group definition, a class is generated either when using the 'element' mapping
property or the 'type' one.

• If a group -- nested or not -- appears to have maxOccurs > 1 , then a class is generated to represent the items
contained in the group.

• For each nested group, a class is generated. The name of the generated class will follow this naming
convention: Name,Compositor+,Counter? where

• 'Name' is name of the top-level component (element, complexType or group).

• 'Compositor' is the compositor of the nested group. For instance, if a 'choice' is nested inside a sequence,
the value of Compositor will be SequenceChoice ('Sequence'+'Choice'). Note: if the 'choice' is inside a
Model Group and that Model Group parent is a Model Group Definition or a complexType then the value
of'Compositor' will be only 'Choice'.

• 'Counter' is a number that prevents naming collision.

2.6.2.2. Wildcard

<any> is supported and will be mapped to an AnyNode instance. However, full namespace validation is not yet
implemented, even though an AnyNode structure is fully namespace aware.

<anyAttribute> is currently not supported. It is a work in progress.

2.7. Examples

In this section we illustrate the use of the XML code generator by discussing the classes generated from given
XML schemas. The XML code generator is going to be used with the “java class mapping” property set to
element (default value).

2.7.1. The invoice XML schema

2.7.1.1. The schema file

The input file is the schema file given with the XML code generator example in the distribution of Castor
(under /src/examples/SourceGenerator/invoice.xsd).

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://castor.exolab.org/Test/Invoice">

<xsd:annotation>
<xsd:documentation>

This is a test XML Schema for Castor XML.
</xsd:documentation>

</xsd:annotation>

<!--
A simple representation of an invoice. This is simply an example
and not meant to be an exact or even complete representation of an invoice.

-->
<xsd:element name="invoice">

<xsd:annotation>
<xsd:documentation>

XML code generation

Castor (1.3.3) 98

A simple representation of an invoice
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:sequence>

<xsd:element name="ship-to">
<xsd:complexType>

<xsd:group ref="customer" />
</xsd:complexType>

</xsd:element>
<xsd:element ref="item"

maxOccurs="unbounded" minOccurs="1" />
<xsd:element ref="shipping-method" />
<xsd:element ref="shipping-date" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!-- Description of a customer -->
<xsd:group name="customer">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" />
<xsd:element ref="address" />
<xsd:element name="phone"

type="TelephoneNumberType" />
</xsd:sequence>

</xsd:group>

<!-- Description of an item -->
<xsd:element name="item">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Quantity"
type="xsd:integer" minOccurs="1" maxOccurs="1" />

<xsd:element name="Price" type="PriceType"
minOccurs="1" maxOccurs="1" />

</xsd:sequence>
<xsd:attributeGroup ref="ItemAttributes" />

</xsd:complexType>
</xsd:element>

<!-- Shipping Method -->
<xsd:element name="shipping-method">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="carrier"
type="xsd:string" />

<xsd:element name="option"
type="xsd:string" />

<xsd:element name="estimated-delivery"
type="xsd:duration" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!-- Shipping date -->
<xsd:element name="shipping-date">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="date" type="xsd:date" />
<xsd:element name="time" type="xsd:time" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!-- A simple U.S. based Address structure -->
<xsd:element name="address">

<xsd:annotation>
<xsd:documentation>

Represents a U.S. Address
</xsd:documentation>

</xsd:annotation>

<xsd:complexType>
<xsd:sequence>

<!-- street address 1 -->
<xsd:element name="street1"

type="xsd:string" />

XML code generation

Castor (1.3.3) 99

<!-- optional street address 2 -->
<xsd:element name="street2"

type="xsd:string" minOccurs="0" />
<!-- city-->
<xsd:element name="city" type="xsd:string" />
<!-- state code -->
<xsd:element name="state"

type="stateCodeType" />
<!-- zip-code -->
<xsd:element ref="zip-code" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<!-- A U.S. Zip Code -->
<xsd:element name="zip-code">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:pattern value="[0-9]{5}(-[0-9]{4})?" />
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

<!-- State Code
obviously not a valid state code....but this is just
an example and I don't feel like creating all the valid
ones.

-->
<xsd:simpleType name="stateCodeType">

<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}" />

</xsd:restriction>
</xsd:simpleType>

<!-- Telephone Number -->
<xsd:simpleType name="TelephoneNumberType">

<xsd:restriction base="xsd:string">
<xsd:length value="12" />
<xsd:pattern value="[0-9]{3}-[0-9]{3}-[0-9]{4}" />

</xsd:restriction>
</xsd:simpleType>

<!-- Cool price type -->
<xsd:simpleType name="PriceType">

<xsd:restriction base="xsd:decimal">
<xsd:fractionDigits value="2" />
<xsd:totalDigits value="5" />
<xsd:minInclusive value="1" />
<xsd:maxInclusive value="100" />

</xsd:restriction>
</xsd:simpleType>

<!-- The attributes for an Item -->
<xsd:attributeGroup name="ItemAttributes">

<xsd:attribute name="Id" type="xsd:ID" minOccurs="1"
maxOccurs="1" />

<xsd:attribute name="InStock" type="xsd:boolean"
default="false" />

<xsd:attribute name="Category" type="xsd:string"
use="required" />

</xsd:attributeGroup>
</xsd:schema>

The structure of this schema is simple: it is composed of a top-level element which is a complexType with
references to other elements inside. This schema represents a simple invoice: an invoice is a customer
(customer top-level group), an article (item element), a shipping method (shipping-method element) and a
shipping date (shipping-date element). Notice that the ship-to element uses a reference to an address

element. This address element is a top-level element that contains a reference to a non-top-level element (the
zip-cod element). At the end of the schema we have two simpleTypes for representing a telephone number and
a price. The Source Generator is used with the element property set for class creation so a class is going to be
generated for all top-level elements. No classes are going to be generated for complexTypes and simpleTypes
since the simpleType is not an enumeration.

XML code generation

Castor (1.3.3) 100

To summarize, we can expect 7 classes : Invoice, Customer, Address, Item, ShipTo, ShippingMethod and
ShippingDate and the 7 corresponding class descriptors. Note that a class is generated for the top-level group
customer

2.7.1.2. Running the XML code generator

To run the source generator and create the source from the invoice.xsd file in a package test, we just call in
the command line:

java -cp %CP% org.exolab.castor.builder.SourceGeneratorMain -i invoice.xsd -package test

2.7.1.3. The generated code

2.7.1.3.1. The Item.java class

To simplify this example we now focus on the item element.

<!-- Description of an item -->
<xsd:element name="item">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Quantity" type="xsd:integer"

minOccurs="1" maxOccurs="1" />
<xsd:element name="Price" type="PriceType"

minOccurs="1" maxOccurs="1" />
</xsd:sequence>
<xsd:attributeGroup ref="ItemAttributes" />

</xsd:complexType>
</xsd:element>

<!-- Cool price type -->
<xsd:simpleType name="PriceType">
<xsd:restriction base="xsd:decimal">
<xsd:fractionDigits value="2" />
<xsd:totalDigits value="5" />
<xsd:minInclusive value="1" />
<xsd:maxInclusive value="100" />

</xsd:restriction>
</xsd:simpleType>

<!-- The attributes for an Item -->
<xsd:attributeGroup name="ItemAttributes">
<xsd:attribute name="Id" type="xsd:ID" minOccurs="1" maxOccurs="1" />
<xsd:attribute name="InStock" type="xsd:boolean" default="false" />
<xsd:attribute name="Category" type="xsd:string" use="required" />

</xsd:attributeGroup>

To represent an Item object, we need to know its Id, the Quantity ordered and the Price for one item. So we
can expect to find a least three private variables: a string for the Id element, an int for the quantity element
(see the section on XML Schema support if you want to see the mapping between a W3C XML Schema type
and a java type), but what type for the Price element?

While processing the Price element, Castor is going to process the type of Price i.e. the simpleType
PriceType which base is decimal. Since derived types are automatically mapped to parent types and W3C
XML Schema decimal type is mapped to a java.math.BigDecimal, the price element will be a
java.math.BigDecimal. Another private variable is created for quantity: quantity is mapped to a primitive
java type, so a boolean has_quantity is created for monitoring the state of the quantity variable. The rest of the
code is the getter/setter methods and the Marshalling framework specific methods. Please find below the
complete Item class (with Javadoc comments stripped off):

XML code generation

Castor (1.3.3) 101

/**
* This class was automatically generated with
* Castor 1.0.4,
* using an XML Schema.
*/

package test;

public class Item implements java.io.Serializable {

//--------------------------/
//- Class/Member Variables -/
//--------------------------/

private java.lang.String _id;

private int _quantity;

/**
* keeps track of state for field: _quantity
*/
private boolean _has_quantity;

private java.math.BigDecimal _price;

//----------------/
//- Constructors -/
//----------------/

public Item() {
super();

} //-- test.Item()

//-----------/
//- Methods -/
//-----------/

public java.lang.String getId() {
return this._id; $

} //-- java.lang.String getId()

public java.math.BigDecimal getPrice() {
return this._price;

} //-- java.math.BigDecimal getPrice()

public int getQuantity() {
return this._quantity;

} //-- int getQuantity()

public boolean hasQuantity() {
return this._has_quantity;

} //-- boolean hasQuantity()

public boolean isValid() {
try {

validate();
} catch (org.exolab.castor.xml.ValidationException vex) {

return false;
}
return true;

} //-- boolean isValid()

public void marshal(java.io.Writer out)
throws org.exolab.castor.xml.MarshalException,org.exolab.castor.xml.ValidationException {

Marshaller.marshal(this, out);
} //-- void marshal(java.io.Writer)

public void marshal(org.xml.sax.DocumentHandler handler)
throws org.exolab.castor.xml.MarshalException, org.exolab.castor.xml.ValidationException {

Marshaller.marshal(this, handler);
} //-- void marshal(org.xml.sax.DocumentHandler)

public void setId(java.lang.String _id) {
this._id = _id;

} //-- void setId(java.lang.String)

XML code generation

Castor (1.3.3) 102

public void setPrice(java.math.BigDecimal _price) {
this._price = _price;

} //-- void setPrice(java.math.BigDecimal)

public void setQuantity(int _quantity) {
this._quantity = _quantity;
this._has_quantity = true;

} //-- void setQuantity(int)

public static test.Item unmarshal(java.io.Reader reader)
throws org.exolab.castor.xml.MarshalException,org.exolab.castor.xml.ValidationException {

return (test.Item) Unmarshaller.unmarshal(test.Item.class, reader);
} //-- test.Item unmarshal(java.io.Reader)

public void validate()
throws org.exolab.castor.xml.ValidationException {

org.exolab.castor.xml.Validator.validate(this, null);
} //-- void validate()

}

The ItemDescriptor class is a bit more complex. This class is containing inner classes which are the XML field
descriptors for the different components of an ‘Item’ element i.e. id, quantity and price.

2.7.1.3.2. The PriceType.java class

TODO ...

2.7.1.3.3. The Invoice.java class

In this section, we focus on the 'invoice' element as shown again below:

<xsd:element name="invoice">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="ship-to">

<xsd:complexType>
<xsd:group ref="customer" />

</xsd:complexType>
</xsd:element>
<xsd:element ref="item" minOccurs="1" maxOccurs="unbounded" />
<xsd:element ref="shipping-method" />
<xsd:element ref="shipping-date" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Amongst other things, an <invoice> is made up of at least one, but potentially many <item> elements. The
Castor XML code generator creates a Java collection named 'itemList' for this unbounded element declaration,
of type java.util.List if the scode generator is used with the 'arraylist' field factory.

private java.util.List _itemList;

If the 'j1' field factory is used, this will be replaced with ...

private java.util.Vector _itemList;

The complete class as generated (with irrelevant code parts removed) in 'j2' (aka 'arraylist') mode is shown
below:

public class Invoice implements java.io.Serializable {

XML code generation

Castor (1.3.3) 103

...

private java.util.List _itemList;

...

public Invoice()
{

super();
this._itemList = new java.util.ArrayList();

} //-- xml.c1677.invoice.generated.Invoice()

...

public void addItem(xml.c1677.invoice.generated.Item vItem)
throws java.lang.IndexOutOfBoundsException

{
this._itemList.add(vItem);

} //-- void addItem(xml.c1677.invoice.generated.Item)

public void addItem(int index, xml.c1677.invoice.generated.Item vItem)
throws java.lang.IndexOutOfBoundsException

{
this._itemList.add(index, vItem);

} //-- void addItem(int, xml.c1677.invoice.generated.Item)

public java.util.Enumeration enumerateItem()
{

return java.util.Collections.enumeration(this._itemList);
} //-- java.util.Enumeration enumerateItem()

public xml.c1677.invoice.generated.Item getItem(int index)
throws java.lang.IndexOutOfBoundsException

{
// check bounds for index
if (index < 0 || index >= this._itemList.size()) {

throw new IndexOutOfBoundsException("getItem: Index value '" + index
+ "' not in range [0.." + (this._itemList.size() - 1) + "]");

}

return (xml.c1677.invoice.generated.Item) _itemList.get(index);
} //-- xml.c1677.invoice.generated.Item getItem(int)

public xml.c1677.invoice.generated.Item[] getItem()
{

int size = this._itemList.size();
xml.c1677.invoice.generated.Item[] array = new xml.c1677.invoice.generated.Item[size];
for (int index = 0; index < size; index++){

array[index] = (xml.c1677.invoice.generated.Item) _itemList.get(index);
}

return array;
} //-- xml.c1677.invoice.generated.Item[] getItem()

public int getItemCount()
{

return this._itemList.size();
} //-- int getItemCount()

public java.util.Iterator iterateItem()
{

return this._itemList.iterator();
} //-- java.util.Iterator iterateItem()

public void removeAllItem()
{

this._itemList.clear();
} //-- void removeAllItem()

public boolean removeItem(xml.c1677.invoice.generated.Item vItem)
{

boolean removed = _itemList.remove(vItem);
return removed;

} //-- boolean removeItem(xml.c1677.invoice.generated.Item)

public xml.c1677.invoice.generated.Item removeItemAt(int index)
{

XML code generation

Castor (1.3.3) 104

Object obj = this._itemList.remove(index);
return (xml.c1677.invoice.generated.Item) obj;

} //-- xml.c1677.invoice.generated.Item removeItemAt(int)

public void setItem(int index, xml.c1677.invoice.generated.Item vItem)
throws java.lang.IndexOutOfBoundsException

{
// check bounds for index
if (index < 0 || index >= this._itemList.size()) {

throw new IndexOutOfBoundsException("setItem: Index value '"
+ index + "' not in range [0.." + (this._itemList.size() - 1) + "]");

}

this._itemList.set(index, vItem);
} //-- void setItem(int, xml.c1677.invoice.generated.Item)

public void setItem(xml.c1677.invoice.generated.Item[] vItemArray)
{

//-- copy array
_itemList.clear();

for (int i = 0; i < vItemArray.length; i++) {
this._itemList.add(vItemArray[i]);

}
} //-- void setItem(xml.c1677.invoice.generated.Item)

}

2.7.2. Non-trivial real world example

Two companies wish to trade with each other using a Supply Chain messaging system. This system sends and
receives Purchase Orders and Order Receipt messages. After many months of discussion they have finally
decided upon the structure of the Version 1.0 of their message XSD and both are presently developing solutions
for it. One of the companies decides to use Java and Castor XML support for (un)marshaling and Castor's code
generator to accelerate their development process.

2.7.2.1. The Supply Chain XSD

<title>supplyChainV1.0.xsd</title>
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="Data">
<xs:annotation>

<xs:documentation>
This section contains the supply chain message data

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:choice>
<xs:element name="PurchaseOrder">
<xs:complexType>
<xs:sequence>

<xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="OrderNumber" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="OrderReceipt">
<xs:complexType>
<xs:sequence>

<xs:element name="LineItem" type="ReceiptLineItemType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="OrderNumber" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

XML code generation

Castor (1.3.3) 105

</xs:element>

<xs:complexType name="SkuType">
<xs:annotation>

<xs:documentation>Contains Product Identifier</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="Number" type="xs:integer"/>
<xs:element name="ID" type="xs:string"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="ReceiptSkuType">
<xs:annotation>

<xs:documentation>Contains Product Identifier</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="SkuType">
<xs:sequence>
<xs:element name="InternalID" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="LineItemType">
<xs:sequence>

<xs:element name="Sku" type="SkuType"/>
<xs:element name="Value" type="xs:double"/>
<xs:element name="BillingInstructions" type="xs:string"/>
<xs:element name="DeliveryDate" type="xs:date"/>
<xs:element name="Number" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="ReceiptLineItemType">
<xs:sequence>

<xs:element name="Sku" type="ReceiptSkuType"/>
<xs:element name="Value" type="xs:double"/>
<xs:element name="PackingDescription" type="xs:string"/>
<xs:element name="ShipDate" type="xs:dateTime"/>
<xs:element name="Number" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

2.7.2.2. Binding file? -- IT IS REQUIRED!

If you run the Castor CodeGenerator on the above XSD you end up with the following set of classes. (You also
get lots of warning messages with the present version.)

Data.java
DataDescriptor.java
LineItem.java
LineItemDescriptor.java
LineItemType.java
LineItemTypeDescriptor.java
OrderReceipt.java
OrderReceiptDescriptor.java
PurchaseOrder.java
PurchaseOrderDescriptor.java
ReceiptLineItemType.java
ReceiptLineItemTypeDescriptor.java
ReceiptSkuType.java
ReceiptSkuTypeDescriptor.java
Sku.java
SkuDescriptor.java
SkuType.java
SkuTypeDescriptor.java

The problem here is that there are two different elements with the same name in different locations in the XSD.

XML code generation

Castor (1.3.3) 106

This causes a Java code generation conflict. By default, Castor uses the element name as the name of the class.
So the second class generated for the LineItem definition, which is different than the first, overwrites the first
class generated.

A binding file is therefore necessary to help the Castor code generator differentiate between these generated
classes and as such avoid such generation conflicts. That is, you can 'bind' an element in the XML schema to a
differently named class file that you want to generate. This keeps different elements separate and ensures that
source is properly generated for each XML Schema object.

Tip

The warning messages for Castor 0.99+ are very useful in assisting you in your creation of the
binding file. For the example the warning messages for the example are:

Warning: A class name generation conflict has occurred between element
'/Data/OrderReceipt/LineItem' and element '/Data/PurchaseOrder/LineItem'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'/Data/OrderReceipt/LineItem' and element '/Data/PurchaseOrder/LineItem'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'/Data/OrderReceipt/LineItem' and element '/Data/PurchaseOrder/LineItem'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'complexType:ReceiptLineItemType/Sku' and element 'complexType:LineItemType/Sku'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'complexType:ReceiptLineItemType/Sku' and element 'complexType:LineItemType/Sku'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

Warning: A class name generation conflict has occurred between element
'complexType:ReceiptLineItemType/Sku' and element 'complexType:LineItemType/Sku'.
Please use a Binding file to solve this problem.Continue anyway [not recommended] (y|n|?)y

The following binding file definition will overcome the naming issues for the generated classes:

<binding xmlns="http://www.castor.org/SourceGenerator/Binding"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.castor.org/SourceGenerator/Binding C:\\Castor\\xsd\\binding.xsd"
defaultBinding="element">

<elementBinding name="/Data/PurchaseOrder/LineItem">
<java-class name="PurchaseOrderLineItem"/>

</elementBinding>

<elementBinding name="/Data/OrderReceipt/LineItem">
<java-class name="OrderReceiptLineItem"/>

</elementBinding>

<elementBinding name="/complexType:ReceiptLineItemType/Sku">
<java-class name="OrderReceiptSku"/>

</elementBinding>

<elementBinding name="/complexType:LineItemType/Sku">
<java-class name="PurchaseOrderSku"/>

</elementBinding>

</binding>

One thing to notice in the above binding.xml file is that the name path used is relative to the root of the XSD
and not the root of the target XML. Also notice that the two complex types have the "complexType:" prefix to
identify them followed by the name path relative to the root of the XSD.

XML code generation

Castor (1.3.3) 107

The new list of generated classes is:

Data.java
DataDescriptor.java
LineItem.java
LineItemDescriptor.java
LineItemType.java
LineItemTypeDescriptor.java
OrderReceipt.java
OrderReceiptDescriptor.java
OrderReceiptLineItem.java
OrderReceiptLineItemDescriptor.java
OrderReceiptSku.java
OrderReceiptSkuDescriptor.java
PurchaseOrder.java
PurchaseOrderDescriptor.java
PurchaseOrderLineItem.java
PurchaseOrderLineItemDescriptor.java
PurchaseOrderSku.java
PurchaseOrderSkuDescriptor.java
ReceiptLineItemType.java
ReceiptLineItemTypeDescriptor.java
ReceiptSkuType.java
ReceiptSkuTypeDescriptor.java
Sku.java
SkuDescriptor.java
SkuType.java
SkuTypeDescriptor.java

The developers can now use these generated classes with Castor to (un)marshal the supply chain messages sent
by their business partner.

XML code generation

Castor (1.3.3) 108

Chapter 3. Castor JDO

3.1. Castor JDO - An introduction
Werner Guttmann <werner DOT guttmann AT gmx DOT net>

3.1.1. What is Castor JDO

Castor JDO is an Object-Relational Mapping and Data-Binding Framework, which is written in 100% pure
Java[tm]. Castor can map relational database data into Java Data Object based on user-defined mapping
schema. In the other point-of-view, it provides java data objects a persistence layer.

It frees programmer from dealing with database directly and replacing the entire burden of composing updating
the database. Proper SQL statements are automatically generated for loading, updating, creating and deleting.
Changes to objects in transaction are automatically done to data source at commit time. Thus programmer can
stay in pure-Java without remember all the details in the backing database, after the creation of database tables
and the mapping schema. The separation of persistence and programming logic also enable much clearer
object-oriented design, which is important in larger projects.

3.1.2. Features

JDO is transactional. Data objects loaded in Castor are properly locked and isolated from other transactions.
Castor supports full 2-phase commit via xa.Synchronzation. Castor supports several locking modes, including
"shared", "exclusive", "database locked", and "read-only".

• Shared access, the default, is useful for situations in which it is common for two or more transactions to read
the same objects, and/or update different objects.

• Exclusive access uses in-memory locks implemented by Castor to force competing transactions to serialize
access to an object. This is useful for applications in which it is common for more than one transaction to
attempt to update the same object, and for which most, if not all access to the database is performed through
Castor.

• Database-Locked access is often used for applications in which exclusive locking is required, but in which
the database is frequently accessed from applications outside of Castor, bypassing Castor's memory-based
locking mechanism used by "exclusive access" locking.

• Read-Only access performs no locking at all. Objects read using this access mode are not locked, and those
objects do not participate in transaction commit/rollback.

In addition, Castor supports "long transactions", whichs allow objects to be read in one transaction, modified,
and then committed in a second transaction, with built-in dirty-checking to prevent data that has been changed
since the initial transaction from being overwritten.

Through automatic dirty-checking and deadlock detection, Castor can be used to ensure data integrity and
reduce unnecessary database updates.

A subset of OQL, defined in the Object Management Group (OMG) 3.0 Object Query Language
Specification, is supported for interacting with the database. OQL is similar to SQL, though operations are
performed directly on Java objects instead of database tables, making the language more appropriate for use

Castor (1.3.3) 109

within a Java-based application.

Castor implements a data cache to reduce database accesses, providing several alternative LRU-based caching
strategies.

Castor supports different cardinalities of relationship, including one-to-one, one-to-many and
many-to-many. It also supports both object and database record inheritance. It distinguishes between related
(i.e. association) and dependent (i.e. aggregation) relationships during an object's life cycle, automatically
creating and deleting dependent objects at appropriate times in the independent object's life cycle.

Multiple-column primary keys, and a variety of key generators are supported.

Castor automatically manages persistence for objects that contain Java collection types, including Vector,
Hashtable, Collection, Set, and Map. Lazy loading (of collections as well as simple 1:1 relations) is
implemented to reduce unnecessary database loading. Lazy loading can be turned on or off for each individual
field (of any supported collection type for 1-to-many and many-to-many relations).

Other features include a type converter for all Java primitive types (see the info on supported types).

No pre-processor (aka pre-compiler), class enhancer (bytecodes modification) is needed or used for
data-binding and object persistence.

Castor JDO works in an application that uses multiple ClassLoaders, making it possible to use in an EJB
container or servlet, for example. A Castor-defined callback interface, "Persistent", can be implemented if the
objects wants to be notified on Castor events: jdoLoad(), jdoCreate(), jdoRemove() and jdoTransient(). This
makes it possible to create user-defined actions to take at various times in an object's life cycle.

The Java-XML Data-Binding Framework (Castor XML) has been merged with Castor JDO for users who need
both O/R Mapping and Java-XML Data-Binding together.

The following relational databases are supported:

• DB2

• Derby

• Generic DBMS

• Hypersonic SQL

• Informix

• InstantDB

• Interbase

• MySQL

• Oracle

• PostgreSQL

• Progress

• SAP DB / MaxDB

• SQLServer

Castor JDO

Castor (1.3.3) 110

• Sybase

Database support includes Oracle 8.1.x and different versions of Sybase Enterprise and Anywhere. Users can
implement the Driver interface to adapt Castor to the differences in SQL syntax supported by different
relational DBMS's, as long as the DBMS supports JDBC 2.0, multiple ResultSet, and transactions. Thanks to
many individual open source contributors, drivers for different database are available.

3.2. Castor JDO - First steps

3.2.1. Introduction

This guide assumes that you do not have any experience with CASTOR JDO, but would like to make your first
steps into the world of persistence and object/relation mapping tools. The following sections show how to setup
and configure Castor JDO so that it is possible to perform persistence operations on the domain objects
presented.

3.2.2. Sample domain objects

The sample domain objects used in here basically define a Catalogue, which is a collection of Products.

public class Catalogue {

private long id;
private List products = new ArrayList();

public long getId() { ... }
public void setId(long id) { ... }

public String getProducts() { ... }
public void setProducts(List products) { ... }

}

public class Product {

private long id;

private String description;

public long getId() { ... }
public void setId(long id) { ... }

public String getDescription() { ... }
public void setDescription(String description) { ... }

}

In order to be able to perform any persistence operation (such as loading products, deleting products from a
catalogue, ...) on these domain objects through Castor JDO, a Castor JDO mapping has to be provided, defining
class and field level mappings for the Java classes given and their members:

<class name="org.castor.sample.Catalogue">
<map-to table="catalogue"/>
<field name="id" type="long">

<sql name="id" type="integer" />
</field>
<field name="products" type="org.castor.sample.Product" collection="arraylist">

<sql many-key="c_id" />
</field>

</class>

Castor JDO

Castor (1.3.3) 111

<class name="org.castor.sample.Product">
<map-to table="product"/>
<field name="id" type="long">

<sql name="id" type="integer" />
</field>
<field name="description" type="string">

<sql name="desc" type="varchar" />
</field>

</class>

3.2.3. Using Castor JDO for the first time

To e.g. load a given Catalogue instance as defined by its identity, and all its associated Product instances, the
following code could be used, based upon the Castor-specific interfaces JDOManager and Database.

JDOManager.loadConfiguration("jdo-conf.xml");
JDOManager jdoManager = JDOmanager.createInstance("sample");

Database database = jdoManager.getDatabase();
database.begin();
Catalogue catalogue = database.load(catalogue.class, new Long(1));
database.commit();
database.close();

For brevity, exception handling has been ommitted completely. But is is quite obvious that - when using such
code fragments again and again, to e.g. implement various methods of a DAO - there's a lot of redundant code
that needed to be written again and again - and exception handling is adding some additional complexity here
as well.

3.2.4. JDO configuration

As shown in above code example, before you can perform any persistence operations on your domain objects,
Castor JDO has to be configured by the means of a JDO configuration file. as part of this JDO configuration,
the user defines one or more databases and everything required to connect to this database (user credentials,
JDBC connection string,).

A valid JDO configuration file for HSQL looks as follows:

<?xml version="1.0" ?>
<!DOCTYPE jdo-conf PUBLIC "-//EXOLAB/Castor JDO Configuration DTD Version 1.0//EN" "http://castor.org/jdo-conf.dtd">
<jdo-conf>
<database name="hsqldb" engine="hsql">
<driver class-name="org.hsqldb.jdbcDriver" url="jdbc:hsqldb:hsql://localhost:9002/dbname">
<param name="user" value="sa"/>
<param name="password" value=""/>

</driver>
<mapping href="mapping.xml"/>

</database>
<transaction-demarcation mode="local"/>

</jdo-conf>

3.3. Using Castor JDO

3.3.1. Opening A JDO Database

Castor JDO

Castor (1.3.3) 112

Castor JDO supports two type of environments, client applications and J2EE servers. Client applications are
responsible for configuring the database connection and managing transactions explicitly. J2EE applications
use JNDI to obtain a pre-configured database connection, and use UserTransaction or container managed
transactions (CMT) to manage transactions. If you have been using JDBC in these two environments, you will
be readily familiar with the two models and the differences between them.

3.3.1.1. Stand-alone application

Client applications are responsible for defining the JDO configuration, and managing the transaction explicitly.
The database is by default configured through a separate XML file which links to the mapping file.
Alternatively, it can be configured using the utility class org.exolab.castor.jdo.util.JDOConfFactory.

In the example code I refer to the JDO configuration file as jdo-conf.xml, but any name can be used. See
Castor JDO Configuration for more information.

As of release 0.9.6, a new JDOManager class is provided, that replaces the former JDO class. Any new features
will be implemented against the new JDOManager class only.

As with its predecessor, org.exolab.castor.jdo.JDOManager defines the database name and properties and is
used to open a database connection. An instance of this class is constructed with a two-step approach:

1. Statically load the JDO configuration file through one of the loadConfiguration() methods, e.g.
org.exolab.castor.jdo.JDOManager.loadConfiguration(java.lang.String).

2. Create an instance of the JDO engine using the factory method
org.exolab.castor.jdo.JDOManager.createInstance(java.lang.String) where you supply one of the
database names defined in the configuration file loaded in step 1).

The org.exolab.castor.jdo.Database object represents an open connection to the database. By definition the
database object is not thread safe and should not be used from concurrent threads. There is little overhead
involved in opening multiple Database objects, and a JDBC connection is acquired only per open transaction.

The following code fragment creates an instance of JDOManager for a database 'mybd', opens a database,
performs a transaction, and closes the database - as it will typically appear in client applications (for brevity, we
have ommitted any required exception handling):

JDOManager jdoManager;
Database db;

// load the JDO configuration file and construct a new JDOManager for the database 'mydb'
JDOManager.loadConfiguration("jdo-conf.xml");
jdoManager = JDOManager.createInstance("mydb");

// Obtain a new database
Database db = jdoManager.getDatabase();

// Begin a transaction
db.begin();

// Do something
. . .

// Commit the transaction and close the database
db.commit();
db.close();

For an example showing how to set up a database configuration on the fly without the need of a preconfigured

Castor JDO

Castor (1.3.3) 113

XML configuration file) see JdoConfFactory.

3.3.1.2. J2EE Application

J2EE applications depend on the J2EE container (Servlet, EJB, etc) to configure the database connection and
use JNDI to look it up. This model allows the application deployer to configure the database properties from a
central place, and gives the J2EE container the ability to manage distributed transactions across multiple data
sources.

Instead of constructing a org.exolab.castor.jdo.JDOManager the application uses the JNDI namespace to
look it up. We recommend enlisting the JDOManager object under the java:comp/env/jdo namespace,
compatible with the convention for listing JDBC resources.

The following code fragment uses JNDI to lookup a database, and uses the JTA UserTransaction interface to
manage the transaction:

InitialContext ctx;
UserTransaction ut;
Database db;

// Lookup databse in JNDI
ctx = new InitialContext();
db = (Database) ctx.lookup("java:comp/env/jdo/mydb");

// Begin a transaction
ut = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
ut.begin();
// Do something
. . .
// Commit the transaction, close database
ut.commit();
db.close();

If the transaction is managed by the container, a common case with EJB beans and in particular entity beans,
there is no need to begin/commit the transaction explicitly. Instead the application server takes care of enlisting
the database in the ongoing transaction and executes commit/rollback at the proper time.

The following code snippet relies on the container to manage the transaction

InitialContext ctx;
UserTransaction ut;
Database db;

// Lookup database in JNDI
ctx = new InitialContext();
db = (Database) ctx.lookup("java:comp/env/jdo/mydb");

// Do something
. . .
// Close the database
db.close();

3.3.2. Using A JDO Database to perform persistence operations

3.3.2.1. Transient And Persistent Objects

All JDO operations occur within the context of a transaction. JDO works by loading data from the database into

Castor JDO

Castor (1.3.3) 114

an object in memory, allowing the application to modify the object, and then storing the object's new state
when the transaction commits. All objects can be in one of two states: transient or persistent.

Transient: Any object whose state will not be saved to the database when the transaction commits. Changes to
transient objects will not be reflected in the database.

Persistent: Any object whose state will be saved to the database when the transaction commits. Changes to
persistent objects will be reflected in the database.

An object becomes persistent in one of two ways: it is the result of a query, (and the query is not performed in
read-only mode) or it is added to the database using
org.exolab.castor.jdo.Database.create(java.lang.Object) or
org.exolab.castor.jdo.Database.update(java.lang.Object). All objects that are not persistent are
transient. When the transaction commits or rolls back, all persistent objects become transient.

In a client application, use org.exolab.castor.jdo.Database.begin(),
org.exolab.castor.jdo.Database.commit() and org.exolab.castor.jdo.Database.rollback() to manage
transactions. In a J2EE application, JDO relies on the container to manage transactions either implicitly (based
on the transaction attribute of a bean) or explicitly using the javax.transaction.UserTransaction interface.

If a persistent object was modified during the transaction, at commit time the modifications are stored back to
the database. If the transaction rolls back, no modifications will be made to the database. Once the transaction
completes, the object is once again transient. To use the same object in two different transactions, you must
query it again.

An object is transient or persistent from the view point of the database to which the transaction belongs. An
object is generally persistent in a single database, and calling
org.exolab.castor.jdo.Database">isPersistent(java.lang.Object) from another database will return
false. It is possible to make an object persistent in two database, e.g. by querying it in one, and creating it in the
other.

3.3.2.2. Running an OQL Query

OQL queries are used to lookup and query objects from the database. OQL queries are similar to SQL queries,
but use object names instead of SQL names and do not require join clauses. For example, if the object being
loaded is of type TestObject, the OQL query will load FROM TestObject, whether the actual table name in the
database is test, test_object, or any other name. If a join is required to load related objects, Castor will
automatically perform the join.

The following code snippet uses an OQL query to load all the objects in a given group. Note that product and
group are related objects, the JDBC query involves a join:

OQLQuery oql;
QueryResults results;

// Explicitly begin transaction
db.begin();

// Construct a new query and bind its parameters
oql = db.getOQLQuery("SELECT p FROM Product p WHERE Group=$1");
oql.bind(groupId);

// Retrieve results and print each one
results = oql.execute();
while (results.hasMore()) {
System.out.println(results.next());

}

// Explicitly close the QueryResults

Castor JDO

Castor (1.3.3) 115

results.close();

// Explicitly close the OQLQuery
oql.close();

// Explicitly commit transaction
db.commit();
db.close();

The following code snippet uses the previous query to obtain products, mark down their price by 25%, and
store them back to the database (in this case using a client application transaction):

OQLQuery oql;
QueryResults results;

// Explicitly begin transaction
db.begin();

// Construct a new query and bind its parameters
oql = db.getOQLQuery("SELECT p FROM Product p WHERE Group=$1");
oql.bind(groupId);

// Retrieve results and mark up each one by 25%
Product prod;
while (results.hasMore()) {
prod = (Product) results.next();
prod.markDown(0.25);
prod.setOnSale(true);

}

// Explicitly close the QueryResults
results.close();

// Explicitly close the OQLQuery
oql.close();

// Explicitly commit transaction
db.commit();
db.close();

As illustrated above, a query is executed in three steps. First a query object is created from the database using
an OQL statement. If there are any parameters, the second step involves binding these parameters. Numbered
parameters are bound using the order specified in their names. (e.g. first $1, after that $2, and so on...) The third
step involves executing the query and obtaining a result set of type org.exolab.castor.jdo.QueryResults.

A query can be created once and executed multiple times. Each time it is executed the bound parameters are
lost, and must be supplied a second time. The result of a query can be used while the query is being executed a
second time.

There is also a special form of query that gives a possibility to call stored procedures:

oql = db.getOQLQuery("CALL sp_something($) AS myapp.Product");

Here sp_something is a stored procedure returning one or more ResultSets with the same sequence of fields as
Castor-generated SELECT for the OQL query "SELECT p FROM myapp.Product p" (for objects without
relations the sequence is: identity, then all other fields in the same order as in mapping.xml).

3.3.2.3. Creating a persistent object

The method org.exolab.castor.jdo.Database.create(java.lang.Object) creates a new object in the
database, or in JDO terminology makes a transient object persistent. An object created with the create method
will remain in the database if the transaction commits; if the transaction rolls back the object will be removed

Castor JDO

Castor (1.3.3) 116

from the database. An exception is thrown if an object with the same identity already exists in the database.

The following code snippet creates a new product with a group that was previously queried:

Database db = ...;
db.begin();

//load product group
ProductGroup furnitures = db.load(...);

// Create the Product object
Product prod;
prod = new Product();
prod.setSku(5678);
prod.setName("Plastic Chair");
prod.setPrice(55.0);
prod.setGroup(furnitures);

// Make it persistent
db.create(prod);

db.commit();

3.3.2.4. Removing a persistent object

The method org.exolab.castor.jdo.Database.remove(java.lang.Object) has the reverse effect, deleting a
persistent object. Once removed the object is no longer visible to any transaction. If the transaction commits,
the object will be removed from the database, however, if the transaction rolls back the object will remain in
the database. An exception is thrown when attempting to remove an object that is not persistent.

The following code snippet deletes the previously created Product instance:

Database db = ...;
db.begin();

// load the Product instance with sku = 5678
Product prod = db.load (Product.class, new Integer(5678);

// delete the Product instance
db.remove(prod);

db.commit();

3.3.2.5. Updating a persistent object

There's no special method offering on the org.exolab.castor.jdo.Database to update an existing persistent
object. Simply load the object to be updated, change one or more of its properties, and commit the transaction.
Castor JDO will automatically figure that that the object in question has changed and will persist these changes
to the underlying database.

The following code snippet loads a previously created Product instance, changes its description property and
commits the transaction.

Database db = ...;
db.begin();

// load the Product instance with sku = 5678
Product prod = db.load (Product.class, new Integer(5678);

// change the object properties
prod.setDescription("New plastic chair");

Castor JDO

Castor (1.3.3) 117

//commit the transaction
db.commit();

3.3.3. Using JDO And XML

Castor JDO and Castor XML can be combined to perform transactional database operations that use XML as
the form of input and output. The following code snippet uses a combination of persistent and transient objects
to describe a financial operation.

This example retrieves two account objects and moves an amount from one account to the other. The transfer is
described using a transient object (i.e. no record in the database), which is then used to generate an XML
document describing the transfer. An extra step (not shown here), uses XSLT to transform the XML document
into an HTML page.

Transfer tran;
Account from;
Account to;
OQLQuery oql;

tran = new Transfer();

// Construct a query and load the two accounts
oql = db.getOQLQuery("SELECT a FROM Account a WHERE Id=$");
oql.bind(fromId);
from = oql.execute().nextElement();
oql.bind(toId);
to = oql.execute().nextElement();

// Move money from one account to the other
if (from.getBalance() >= amount) {
from.decBalance(amount);
to.incBalance(amount);
trans.setStatus(Transfer.COMPLETE);
trans.setAccount(from);
trans.setAmount(amount);

} else {
// Report an overdraft
trans.setStatus(Transfer.OVERDRAFT);

}

// Produce an XML describing the transfer
Marshaller.marshal(trans, outputStream);

The XML produced by the above code might look like:

<?xml version="1.0"?>
<report>
<status>Completed</status>
<account id="1234-5678-90" balance="50"/>
<transfer amount="49.99"/>

</report>

3.4. Castor JDO - Configuration

Castor JDO allows for two simple ways of specifying its required configuration, e.g. by the means of supplying
Castor JDO with an XML-based configuration file, and by specifying its configuration programmatically via
the org.exoalb.castor.util.jdo.JDOConfFactory class.

Castor JDO

Castor (1.3.3) 118

3.4.1. The Castor configuration file

The default way to configure how Castor interacts with a specific database system is by using a configuration
file. It specifies the means to obtain a connection to the database server, the mapping between Java classes and
tables in that database server, and the service provider to use for talking to that server (For a more flexible,
programmatic way without configuration files see section JDOConfFactory).

The application will access the database(s) by its given name (database/name) and will be able to persist all
objects specified in the included mapping file(s).

The engine attribute specifies the persistence engine for this database server. Different database servers vary in
the SQL syntax and capabilites they support, and this attribute names the service provider to use.

The following names are supported in Castor:

Table 3.1. Supported engine names

engine name RDBMS

db2 DB/2

derby Derby

generic Generic JDBC support

hsql Hypersonic SQL

informix Informix

instantdb InstantDB

interbase Interbase

mysql MySQL

oracle Oracle 7 - Oracle 9i

postgresql PostgreSQL 7.1

sapdb SAP DB / MaxDB

sql-server Microsoft SQL Server

sybase Sybase 11

pointbase Borland Pointbase

progress Progress RDBMS

Note

Castor doesn't work with JDBC-ODBC bridge from Sun. In particular, MS Access is not supported.

The means to acquire a database connection is specified in one of three ways: as a JDBC driver URL, as a
JDBC DataSource, or as a DataSource to lookup through JNDI. When Castor is used inside a J2EE application
server it is recommended to use JNDI lookup (see the jndi element), allowing the application server to manage
connection pooling and distributed transactions.

Castor JDO

Castor (1.3.3) 119

The class mapping is included from an external mapping file, allowing multiple mappings to be included in the
same database configuration, or two databases to share the same mappings. For concurrency and integrity
reasons, two database configurations should never attempt to use overlapping mappings. It is recommended to
use one database configuration per database server.

The mapping file is specified using a URL, typically a file: URL. If the database configuration file and
mapping file reside in the same directory, use a relative URL. Relative URLs also work if the database
configuration and mapping files are obtained from the application JAR and reside in the same classpath.

The driver element specifies the JDBC driver for obtaining new connections to the database server. The driver
is obtained from the JDBC DriverManager and must be located in the class path. The JDBC URL locates the
driver and provides the access properties. Additional properties may be specified using param elements (e.g.
buffer size, network protocol, etc).

Use the class-name attribute to specify the driver class for automatic registration with the JDBC
DriverManager. If missing, the driver must be registered in any other means, including properties file,
Class.forName(), etc.

For example, to configure an Oracle 8 thin driver, use:

<jdo-conf>
<database name="ebiz" engine="oracle">

<driver class-name="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@host:port:SID">

<param name="user" value="scott" />
<param name="password" value="tiger" />

</driver>
...

</database>
...

</jdo-conf>

The data-source element specifies the JDBC DataSource for obtaining new connections to the database
server. DataSources are defined in the JDBC 2.0 standard extension API which is included with Castor, and
implement the interface javax.sql.DataSource.

The DataSource implementation class name is specified by the class-name attribute and configured through
Bean-like accessor methods specified for the param element. The DTD for the param element is undefined and
depends on the DataSource being used.

For example, to configure a PostgreSQL 7.1 DataSource, use:

<jdo-conf>
<database name="ebiz" engine="oracle">

<data-source class-name="org.postgresql.PostgresqlDataSource">
<param name="serverName" value="host" />
<param name="portNumber" value="5432" />
<param name="databaseName" value="db" />
<param name="user" value="user" />
<param name="password=" value="secret" />

</data-source>
...

</database>
...

</jdo-conf>

The jndi element specifies the JDBC DataSource for obtaining new connections to the database server through
a JNDI lookup. The JNDI environment naming context (ENC) is used to obtain a suitable DataSource..

Castor JDO

Castor (1.3.3) 120

When running inside a J2EE application server, this is the preferred method for obtaining database connections.
It enables the J2EE application server to configure the connection, maintain a connection pool, and manage
distributed transactions.

For example, to specify a J2EE DataSource, use:

<jdo-conf>
<database name="ebiz" engine="oracle">

<jndi name="java:comp/env/jdbc/mydb" />
</database>
...

</jdo-conf>

3.4.1.1. Transaction demarcation

As opposed to release pre 0.9.6, transaction demarcation is now configured in the JDO configuration file. As
such, the user has to specify which transaction demarcation to use. Transactions when used with Castor JDO
can either be local or global, and you instruct Castor to use a specific mode by supplying a
<transaction-demarcation> element.

3.4.1.1.1. Local Mode

When using Castor JDO stand-alone and you want Castor to control transaction demarcation, please use the
<transaction-demarcation> element as follows:

<transaction-demarcation mode="local" />

3.4.1.1.2. Global Mode

When running inside a J2EE application server, and you want to use global (XA) transactions, please make use
the <transaction-demarcation> element as follows:

<transaction-demarcation mode="global">
<transaction-manager name="jndi" />

</transaction-demarcation>

In this mode, the <transaction-manager> element specifies the transaction manager that is used by your J2EE
container to control these transactions.

The following transaction managers are supported in Castor:

Table 3.2. Supported transaction managers

Name Description

jndi TM looked up in the JNDI ENC

websphere IBM WebSphere 4 and previous releases

websphere5 IBM WebSphere 5

websphere51 IBM WebSphere 5.1

Castor JDO

Castor (1.3.3) 121

Name Description

jotm JOTM

atomikos Atomikos

In addition to specifying the transaction manager name, it is possible to pass arbitrary name/value pairs to the
transaction manager instance.

Note

At the moment, only the JNDI transaction manager factory supports such an attribute. In this
context, the jndiEnc attribute can be used to specify what JNDI ENC to use to lookup the
transaction manager as shown below:

<transaction-demarcation mode="global">
<transaction-manager name="jndi">

<param name="jndiEnc" value="java:comp/env/TransactionManager"/>
</transaction-manager>

</transaction-demarcation>

3.4.1.2. Sample Configuration File

The following configuration file instructs Castor JDO to execute against an Oracle RDBMS using the thin (type
4) JDBC driver, and refers to three mapping files that define mappings for product, order and customer related
data.

<?xml version="1.0"?>
<jdo-conf name="order-system">

<database name="ebiz" engine="oracle">
<driver class-name="oracle.jdbc.driver.OracleDriver"

url="jdbc:oracle:thin:@machine:post:SID">
<param name="user" value="scott"/>
<param name="password" value="tiger"/>

</driver>
<mapping href="products.xml"/>
<mapping href="orders.xml"/>
<mapping href="customers.xml"/>

</database>
<transaction-demarcation mode="local"/>

</jdo-conf>

The following configuration file uses a connection obtained from the J2EE application server and a single
mapping file:

<?xml version="1.0"?>
<jdo-conf>

<database name="ebiz" engine="oracle">
<jndi name="java:comp/env/jdbc/mydb"/>
<mapping href="ebiz.xml"/>

</database>
<transaction-demarcation mode="global">

<transaction-manager name="jndi">
<param name="jndiEnc" value="java:comp/env/TransactionManager"/>

</transaction-manager>
</transaction-demarcation>

</jdo-conf>

Castor JDO

Castor (1.3.3) 122

3.4.1.3. Prepared statement pooling

Castor JDO uses JDBC prepared statements to execute SQL statements against the specified RDBMS of your
choice. Per definition, Castor JDO does not provide any prepared statement pooling. As such, Castor relies on
prepared statement pooling being provided by different means.

One such way is to use Jakarta's Commons DBCP as database connection pool, and to turn prepared statement
pooling on by configuring DBCP accordingly.

Please check with Using Pooled Database Connections for general information about hot to use DBCP with
Castor.

3.4.1.4. Sample configurations for various databases

Besides the examples listed above, more configuraton examples can be found in the configuration files for the
Castor JDO tests, which can be found in src/tests/jdo once you have downloaded and expanded the Castor
source package. For each database (vendor) supported, you are going to find a database-specific JDO
configuration file in this directory, e.g. src/tests/jdo/mysql.xml for mySQL™ or
src/tests/jdo/oracle.xml for Oracle™.

3.4.1.4.1. Sybase JConnect (JDBC data source)

...
<!-- JDBC data source for Sybase using jConnect -->
<data-source class-name="com.sybase.jdbc2.jdbc.SybDataSource">
<param name="user" value="user" />
<param name="password value="secret" />
<param name="portNumber" value="4100" />
<param name="serverName" value="host" />

</data-source>
...

3.4.1.4.2. PostgreSQL (JDBC data source)

...
<!-- JDBC data source for PostgreSQL -->
<data-source class-name="org.postgresql.PostgresqlDataSource">

<param name="serverName" value="host" />
<param name="portNumber" value="5432" />
<param name="databaseName" value="db" />
<param name="user" value="user" />
<param name="password" value="secret" />

</data-source>
...

3.4.1.4.3. Oracle (JDBC Driver)

...
<!-- JDBC driver definition for Oracle -->
<driver class-name="oracle.jdbc.driver.OracleDriver"

url="jdbc:oracle:thin:@host:post:SID">
<param name="user" value="scott" />
<param name="password" value="tiger" />

</driver>
...

Castor JDO

Castor (1.3.3) 123

http://jakarta.apache.org/commons/dbcp/

3.4.1.4.4. mySQL (JDBC Driver)

...
<!-- JDBC data source for mySQL -->
<driver class-name="com.mysql.jdbc.Driver"

url="jdbc:mysql:/localhost:2206/test">
<param name="user" value="scott" />
<param name="password" value="tiger" />

</driver>
...

3.4.1.4.5. InstantDB

...
<!-- JDBC data source for InstantDB -->
<driver class-name="org.enhydra.instantdb.jdbc.idbDriver"

url="jdbc:idb:C:\\castor-1.0\\db\\test\\test.prp">
<param name="user" value="" />
<param name="password" value="" />

</driver>
...

3.4.2. JDOConfFactory - A programmatic way of configuring Castor JDO

Many applications need to connect to a database using varying user accounts or database instances. To
accomplish this, the utility class org.exolab.castor.jdo.util.JDOConfFactory">JDOConfFactory and a
JDOManager.loadConfiguration(org.exolab.castor.jdo.conf.JdoConf) method has been added to Castor.

The following code snippet shows an example how to create a JDO configuration without the use of a default
XML-based database configuration file:

private static final String DRIVER = "oracle.jdbc.driver.OracleDriver";
private static final String CONNECT = "jdbc:oracle:thin:localhost:1521:SID";
private static final String USERNAME = "scott";
private static final String PASSWORD = "tiger";
private static final String MAPPING = "mapping.xml";
private static final String DATABASE = "mydb";
private static final String ENGINE = "oracle";

// create driver configuration
org.castor.jdo.conf.Driver driverConf =

JDOConfFactory.createDriver(DRIVER, CONNECT, USERNAME, PASSWORD);

// create mapping configuration
org.castor.jdo.conf.Mapping mappingConf =

JDOConfFactory.createMapping(getClass().getResource(MAPPING).toString());

// create database configuration
org.castor.jdo.conf.Database dbConf =

JDOConfFactory.createDatabase(DATABASE, ENGINE, driverConf, mappingConf);

// create and load jdo configuration
JDOManager.loadConfiguration(JDOConfFactory.createJdoConf(dbConf));

// Construct a new JDOManager for the database
jdoManager = JDOManager.createInstance(DATABASE);

// Obtain a new database
Database db = jdoManager.getDatabase();

Castor JDO

Castor (1.3.3) 124

As an alternative to using a org.exolab.castor.jdo.conf.Driver, you can also configure Castor to use a JDBC 2.0
DataSource:

private static final String DS = "oracle.jdbc.pool.OracleConnectionCacheImpl";
private static final String CONNECT = "jdbc:oracle:thin:localhost:1521:SID";
private static final String USERNAME = "scott";
private static final String PASSWORD = "tiger";
private static final String MAPPING = "mapping.xml";
private static final String DATABASE = "mydb";
private static final String ENGINE = "oracle";

// setup properties for datasource configuration
Properties props = new Properties();
props.put("URL", CONNECT);
props.put("user", USERNAME);
props.put("password", PASSWORD);

// create datasource configuration
org.castor.jdo.conf.DataSource dsConf =

JDOConfFactory.createDataSource(DS, props);

// create mapping configuration
org.castor.jdo.conf.Mapping mappingConf =

JDOConfFactory.createMapping(getClass().getResource(MAPPING).toString());

// create database configuration
org.castor.jdo.conf.Database dbConf =

JDOConfFactory.createDatabase(DATABASE, ENGINE, dsConf, mappingConf);

// create and load jdo configuration
JDOManager.loadConfiguration(JDOConfFactory.createJdoConf(dbConf));

// Construct a new JDOManager for the database
jdoManager = JDOManager.createInstance(DATABASE);

// Obtain a new database
Database db = jdoManager.getDatabase();

3.4.3. References

3.4.3.1. The JDO Configuration DTD

For validation, the configuration file should include the following document type definition. For DTD
validation use:

<!DOCTYPE jdo-conf PUBLIC "-//EXOLAB/Castor JDO Configuration DTD Version 1.0//EN"
"http://castor.org/jdo-conf.dtd">

For XML Schema validation use:

<!DOCTYPE jdo-conf PUBLIC "-//EXOLAB/Castor JDO Configuration Schema Version 1.0//EN"
"http://castor.org/jdo-conf.xsd">

The Castor namespace URI is http://castor.org/.

The Castor JDO database configuration DTD is:

<!ELEMENT jdo-conf (database+, transaction-demarcation)>

Castor JDO

Castor (1.3.3) 125

<!ATTLIST jdo-conf
name CDATA "jdo-conf">

<!ELEMENT database ((driver | data-source | jndi)?, mapping+)>

<!ATTLIST database
name ID #REQUIRED
engine CDATA "generic">

<!ELEMENT mapping EMPTY>
<!ATTLIST mapping

href CDATA #REQUIRED>

<!ELEMENT driver (param*)>
<!ATTLIST driver

url CDATA #REQUIRED
class-name CDATA #REQUIRED>

<!ELEMENT data-source (param*)>
<!ATTLIST data-source

class-name CDATA #REQUIRED>

<!ELEMENT jndi ANY>
<!ATTLIST jndi

name CDATA #REQUIRED>

<!ELEMENT transaction-demarcation (transaction-manager?)>
<!ATTLIST transaction-demarcation

mode CDATA #REQUIRED>

<!ELEMENT transaction-manager (param*)>
<!ATTLIST transaction-manager

name CDATA #REQUIRED>

<!ELEMENT param EMPTY>
<!ATTLIST param

name CDATA #REQUIRED
value CDATA #REQUIRED>

3.5. Type Support

3.5.1. Types

The Castor type mechanism assures proper conversion between Java types and external types.

3.5.1.1. Castor XML

Castor XML converts all Java fields into XML element and attribute values.

3.5.1.2. Castor JDO

Castor JDO converts Java fields into SQL columns which are persisted through the JDBC driver. Due to
implementation details, the field type expected by the JDBC driver is not always the field type defined for the
mapped object.

The most common occurrences of mistyping is when using fields of type FLOAT, DOUBLE, NUMERIC, and
DECIMAL. SQL type FLOAT actually maps to Java type java.lang.Double. SQL types NUMERIC and
DECIMAL map to Java type java.math.BigDecimal.

When such an inconsistency occurs, Castor JDO will throw an IllegalArgumentException during object
persistence with a message indicating the two conflicting types.

Castor JDO

Castor (1.3.3) 126

In order to avoid runtime exceptions, we recommend explicitly specifying types in the mapping file using the
SQL typing convention. See SQL Type Conversion.

3.5.1.3. Castor DAX

Castor DAX converts all Java fields into LDAP attribute values. LDAP attribute values are always textual and
are represented as the string value of the field, e.g. "5" or "true".

LDAP attributes may also contain binary values. When storing byte arrays or serialized Java objects, DAX will
store them as byte arrays.

3.5.2. The Field Mapping

The field element includes an optional attribute called type which can be used to specify the Java type of the
field. This attribute is optional since Castor can always derive the exact Java type from the class definition.

We highly recommend that developers use the type field in their mapping file as a means to provide static type
checking. When loading a mapping file, Castor will compare the actual Java type with the type specified in the
mapping and will complain about inconsistencies.

The field type can be specified either given the full class name (e.g. java.lang.Integer) or using a short name.
The following table lists all the acceptable short names and the Java types they represent:

Table 3.3. Acceptable short names

short name Primitive type? Java Class

big-decimal N java.math.BigDecimal

boolean Y java.lang.Boolean.TYPE

byte Y java.lang.Byte.TYPE

bytes N byte[]

char Y java.lang.Character.TYPE

chars N char[]

clob N java.sql.Clob

date N java.util.Date

double Y java.lang.Double.TYPE

float Y java.lang.Float.TYPE

integer Y java.lang.Integer.TYPE

locale N java.util.Locale

long Y java.lang.Long.TYPE

other N java.lang.Object

short Y java.lang.Short.TYPE

string N java.lang.String

Castor JDO

Castor (1.3.3) 127

short name Primitive type? Java Class

strings N String[]

stream N java.io.InputStream

In addition, support for the following Castor-internal field types has been added:

Table 3.4. Castor-internal field types

short name Primitive type? Java Class

duration N org.exolab.castor.types.Duration

3.5.3. SQL Dates and Default Timezones

Castor will use the JDBC ResultSet.getDate(int, Calendar) and related methods which take a Calendar
object to specify the timezone of the data retrieved from the database when the timezone information is not
already specified in the data; this ensures that the "current" timezone is applied.

The default time zone can be configured in the castor.properties file; see the configuration section for details on
how to configure Castor with information about your default time zone.

To change the timezone to a different timezone than the default, please set a (different) value on the
org.exolab.castor.jdo.defaultTimeZone property:

Default time zone to apply to dates/times fetched from database fields,
if not already part of the data. Specify same format as in
java.util.TimeZone.getTimeZone, or an empty string to use the computer's
local time zone.
org.exolab.castor.jdo.defaultTimeZone=
#org.exolab.castor.jdo.defaultTimeZone=GMT+8:00

3.5.4. SQL Type Conversion

Castor JDO uses the JDBC getObject/setObject methods in order to retrieve and set fields. These methods
do not perform automatic type conversion, often resulting in unexpected behavior. For example, when using a
NUMERIC field with direct JDBC access, application developers tend to call getInteger() or getFloat(),
but the Java object returned from a call to getObject is often a java.math.BigDecimal.

Castor JDO implements automatic type conversion between Java and SQL. For this mechanism to work, the
mapping file must specify the SQL type being used for Castor to employ the proper convertor. If no SQL type
is specified, no conversion will occur, possibly resulting in an IllegalArgumentException being thrown.

SQL types are specified with the sql-type attribute using either the default Java type returned by the JDBC
driver (e.g. java.lang.Integer or the proper SQL type name (without precision). The following table lists the
supported SQL type names and the corresponding Java types:

Table 3.5. Supported SQL type names

Castor JDO

Castor (1.3.3) 128

http://www.castor.org/conf-lib.html

SQL Type Java Type

bigint java.lang.Long

binary byte[]

bit java.lang.Boolean

blob java.io.InputStream

char java.lang.String

clob java.sql.Clob

decimal java.math.BigDecimal

double java.lang.Double

float java.lang.Double

integer java.lang.Integer

longvarbinary byte[]

longvarchar java.lang.String

numeric java.math.BigDecimal

real java.lang.Float

smallint java.lang.Short

time java.sql.Time

timestamp java.sql.Timestamp

tinyint java.lang.Byte

varbinary byte[]

varchar java.lang.String

other java.lang.Object

javaobject java.lang.Object

The following example illustrates how to specify SQL type in field mapping:

<field name="prodId" type="integer">
<sql name="prod_id" type="numeric"/>

</field>

Please note that java.util.Date is not automatically converted into a java.sql.Date object; while it is in theory
possible to do so, there are three different possible storage formats for date information: as a java.sql.Date,
java.sql.Time, and java.sql.Timestamp. Rather than impose a possibly inappropriate data mapping on an entry,
no automatic transformation will take place.

JDBC drivers which do not, themselves, perform a mapping between java.util.Date and the sql format specified
on the database will throw an error when java.util.Date is passed to them on the prepared statement. Moreover,
auto-conversion of java.util.Date is outside of the JDBC specification; it is not a supported auto-convert format.

Castor JDO

Castor (1.3.3) 129

Users wishing to store date information into the database should ensure that they set date, time, or timestamp as
the sql type on the sql-type attribute.

3.5.5. Parameterized Type Convertors

Some of the type convertors may have a string parameter, which changes the conversion algorithm. The
parameter is specified in square brackets after the SQL type, for example:

<field name="active" type="boolean">
<sql name="acc_active" type="char[01]"/>

</field>

where "0" is the character value for false and "1" is the character value for true.

In the above example the first of a bunch of parameterized type convertors is used, "boolean --> char"
convertor. The parameter must have length 2, the first character is the value for false, the second character is
the value for true. The default value is "FT". The actual SQL type should be char(1).

The second and third convertors are "boolean --> integer" and "boolean --> numeric". Its parameter must be +
for +1 or - for -1 representing true. False is always converted to 0. For example:

<field name="flagWithMinusOneForTrue" type="boolean">
<sql name="flag" type="integer[-]"/>

</field>

If the parameter is not specified, true is converted to +1.

The fourth convertor is "date --> char". Its parameter must be a correct pattern for SimpleDateFormat. For
example:

<field name="dateOfBirth" type="date">
<sql name="pers_dob" type="char[MMM d, yyyy]"/>

</field>

If the parameter is not specified, the conversion is performed using toString() method of the Date class.

The fifth and the sixth convertors are "date --> integer" and "date --> numeric". Their parameters are also
patterns having syntax based on the SimpleDateFormat syntax, but repeated characters are eliminated. The
following table shows the substitution rules that are used to obtain the SimpleDateFormat pattern from the
parameter.

Table 3.6. Substitution rules

Y,y yyyy year

M MM month in year

D,d dd day in month

h,H HH hour in day (0~23)

m mm minute in hour

s ss second in minute

Castor JDO

Castor (1.3.3) 130

S SSS millisecond

For example, "YMD" parameter is expanded to "yyyyMMdd" SimpleDateFormat pattern, "YMDhmsS"
parameter is expanded to "yyyyMMddHHmmssSSS" SimpleDateFormat pattern. The length of the expanded
parameter gives the minimal number of decimal digits that the actual SQL type must support. The default value
of the parameter is "YMD".

The date and time types of org.exolab.castor.types package support 2 timelines as defined by XML schema
specification. One for timezoned values and one for non-timezoned values which are treated to be local. When
converting such types to long the timezone information is lost. In most cases it is no problem to loose for which
timezone the value was specified if the value get converted to UTC time before. But we also loose if the value
had a timezone or not. This causes that we do not know to which timeline the value belongs. If we just treat it
as non-timezoned value while it has been a timezoned one we have changed the value.

Therefore we have added support for another parameterized type converter. This one allows you to specify if
the date and time values created out of a persisted long value are meant to be timezoned or not. By default,
without a parameter, local date or time instances are created without a timezone. If you specify the parameter
utc in mapping the date or time values are created based on UTC timezone. It need to be noted that such a
mapping can only handle date and time values of one of the 2 timelines defined by XML schema specification.
Having said that this only applies to the conversion of such values to long and does not cause issues when
converting to string and back.

<field name="timeOfBirth" type="org.exolab.castor.types.Time">
<sql name="pers_tob" type="bigint[utc]"/>

</field>

3.5.6. BLOB and CLOB Types

BLOB and CLOB stand for binary and character large objects (or in Sybase, IMAGE and TEXT types,
respectively). This means that most likely you don't want to load the whole objects into memory, but instead
want to read and write them as streams. Usually these types are not comparable via the WHERE clause of a SQL
statement. That is why you should disable dirty checking for such fields, e.g.

<field name="text" type="string">
<sql name="text" type="clob" dirty="ignore" />

</field>

In this example CLOB field will be read as a String. This may cause OutOfMemoryError if the text is really
large, but in many cases mapping CLOB to String is acceptable. The advantage of mapping to String is that we
obtain a Serializable value that can be passed via RMI. Similarly you can map BLOB and CLOB to byte[] and
char[] types, respectively:

<field name="photo" type="bytes">
<sql name="photo" type="blob" dirty="ignore" />

</field>
<field name="resume" type="chars">
<sql name="resume" type="clob" dirty="ignore" />

</field>

Now, assume that mapping to String is not acceptable. The natural Java type mapping for the BLOB type is
java.io.InputStream, and this mapping is supported by Castor:

Castor JDO

Castor (1.3.3) 131

<field name="cdImage" type="stream">
<sql name="cd_image" type="blob" dirty="ignore" />

</field>

The natural Java type mapping for the CLOB type is java.io.Reader, but this mapping is not supported by
Castor because java.io.Reader doesn't provide information about the length of the stream and this
information is necessary for JDBC driver (at least for the Oracle driver) to write the value to the database. This
is why the CLOB type is mapped to java.sql.Clob:

<field name="novel" type="clob">
<sql name="novel" type="clob" dirty="ignore" />

</field>

When you read data from the database, you can use the getCharacterStream() method to obtain a
java.io.Reader from java.sql.Clob. When you write data to the database, you can either use the helper class
org.exolab.castor.jdo.engine.ClobImpl to construct java.sql.Clob from java.io.Reader and the length:

object.setClob(new ClobImpl(new FileReader(file), file.length());

or implement the java.sql.Clob interface yourself.

But be aware of the followng restriction: if you map BLOB to java.io.InputStream or CLOB to
java.sql.Clob, then you should turn caching off for the Java class containing those values, e.g.:

<class ...>
<cache-type type="none"/>
...
<field name="novel" type="clob">

<sql name="novel" type="clob" dirty="ignore" />
</field>

</class>

Blob and Clob values cannot be cached, because they are alive only while the ResultSet that produced them is
open. In particular, this means that you cannot use dirty checking for long transactions with such classes.

3.6. Castor JDO Mapping
Bruce Snyder
Werner Guttmann

3.6.1. News

Release 1.0 M3:

• Added collection type 'iterator'.

• Added collection type 'enumerate'.

• Added additional syntax for specifying the identity of a class.

Castor JDO

Castor (1.3.3) 132

3.6.2. Introduction

The Castor mapping file also provides a mechanism for binding a Java object model to a relational database
model. This is usually referred to as object-to-relational mapping (O/R mapping). O/R mapping bridges the gap
between an object model and a relational model.

The mapping file provides a description of the Java object model to Castor JDO. Via Castor XML, Castor JDO
uses the information in the mapping file to map Java objects to relational database tables. The following is a
high-level example of a mapping file:

<mapping>
<class ... >

<map-to ... />
<field ... >

<sql ... />
</field>
...

</class>
</mapping>

Each Java object is represented by a <class> element composed of attributes, a <map-to> element and <field>
elements. The <map-to> element contains a reference to the relational table to which the Java object maps.
Each <field> element represents either a public class variable or the variable's accessor/mutator methods
(depending upon the mapping info). Each <field> element is composed of attributes and one <sql> element.
The <sql> element represents the field in the relational table to which the <field> element maps.

It is possible to use the mapping file and Castor's default behavior in conjunction. When Castor handles an
object but is unable to locate information about it in the mapping file, it will rely upon its default behavior.
Castor makes use of the Java programming language Reflection API to introspect the Java objects to determine
the methods to use. This is the reason some attributes are not required in the mapping file.

3.6.3. The Mapping File

3.6.3.1. The <mapping> element

<!ELEMENT mapping (description?, include*, class*, key-generator*)>

The <mapping> element is the root element of a mapping file. It contains:

• an optional description

• zero or more <include> which facilitates reusing mapping files

• zero or more <class> descriptions: one for each class we intend to give mapping information

• zero or more <key-generator>: not used for XML mapping

A mapping file look like this:

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Object Mapping DTD Version 1.0//EN"

"http://castor.org/mapping.dtd">

<mapping>
<description>Description of the mapping</description>

Castor JDO

Castor (1.3.3) 133

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/reflect/package-summary.html

<include href="other_mapping_file.xml"/>

<class name="A">
...

</class>

<class name="B">
...

</class>
</mapping>

3.6.3.2. The <class> element

<!ELEMENT class (description?, cache-type?, map-to?, field+)>
<!ATTLIST class

name ID #REQUIRED
extends IDREF #IMPLIED
depends IDREF #IMPLIED
auto-complete (true |false) "false"
identity CDATA #IMPLIED
access (read-only | shared | exclusive | db-locked) "shared"
key-generator IDREF #IMPLIED >

The <class> element contains all the information used to map a Java object to a relational database. The content
of <class> is mainly used to describe the fields that will be mapped.

Description of the attributes:

• name: The fully qualified package name of the Java object to map to.

• extends: Should be used only if this Java object extends another Java object for which mapping information
is provided. It should not be used if the extended Java object is not referenced in the mapping file.

• depends: For more information on this field, please see Dependent and related relationships.

• identity: For more information on this field, please see Design -> Persistence.

• access: For more information on this field, please see Locking Modes.

• key-generator: For more information on this field, please see KeyGen.

Description of the elements:

• <description>: An optional description.

• <cache-type>: For more information on this field please see Bounded Dirty Checking and Caching.

• <map-to>: Used to tell Castor the name of the relational table to which to map.

• <field>: Zero or more <field> elements are used to describe properties of each Java object.

3.6.3.3. The <map-to> element

<!ELEMENT map-to EMPTY>
<!ATTLIST map-to

table NMTOKEN #IMPLIED
xml NMTOKEN #IMPLIED
ns-uri NMTOKEN #IMPLIED
ns-prefix NMTOKEN #IMPLIED
ldap-dn NMTOKEN #IMPLIED

Castor JDO

Castor (1.3.3) 134

ldap-oc NMTOKEN #IMPLIED>

<map-to> is used to specify the name of the item that should be associated with the given Java object. The
<map-to> element is only used for the root Java object.

Description of the attributes:

• table: The name of the relational database table to which the Java object is associated.

3.6.3.4. The <field> element

<!ELEMENT field (description?, sql?, xml?, ldap?)>
<!ATTLIST field

name NMTOKEN #REQUIRED
type NMTOKEN #IMPLIED
required (true | false) "false"
direct (true | false) "false"
lazy (true | false) "false"
transient (true | false) "false"
identity (true | false) "false"
get-method NMTOKEN #IMPLIED
set-method NMTOKEN #IMPLIED
create-method NMTOKEN #IMPLIED
collection (array | enumerate | collection | set |

arraylist | vector | map | hashtable | sortedset | iterator) #IMPLIED
comparator NMTOKEN #IMPLIED>

The <field> element is used to describe a property of a Java object. It provides:

• the identity ('name') of the property

• the type of the property (inferred from 'type' and 'collection')

• the access method of the property (inferred from 'direct', 'get-method', 'set-method')

From this information, Castor is able to access a given property in the Java object.

In order to determine the signature that Castor expects, there are two easy rules to apply.

1. Determine <type>.

• If there is no 'collection' attribute, the object type is the value of the 'type' attribute. The value of the type
attribute can be a fully qualified Java object like 'java.lang.String' or one of the allowed aliases:

short name Primitive type? Java Class

big-decimal N java.math.BigDecimal

big-integer Y java.math.BigInteger

boolean Y java.lang.Boolean.TYPE

byte Y java.lang.Byte.TYPE

bytes N byte[]

char Y java.lang.Character.TYPE

Castor JDO

Castor (1.3.3) 135

chars N char[]

clob N java.sql.Clob

date N java.util.Date

double Y java.lang.Double.TYPE

float Y java.lang.Float.TYPE

int Y java.lang.Integer.TYPE

integer Y java.lang.Integer

locale N java.util.Locale

long Y java.lang.Long.TYPE

other N java.lang.Object

serializable Y java.io.Serializable

short Y java.lang.Short.TYPE

sqldate Y java.sql.Date

sqltime Y java.sql.Date

string N java.lang.String

strings N String[]

stream N java.io.InputStream

timestamp N java.sql.Timestamp

Castor will try to cast the data in the mapping file to the proper Java type.

• If there is a collection attribute, the items in the following table can be used:

name type default implementation added in release

array <type_attribute>[] <type_attribute>[]

enumerate java.util.Enumeration - 1.0 M3

collection java.util.Collection java.util.ArrayList

set java.util.Set java.util.HashSet

arraylist java.util.ArrayList java.util.ArrayList

vector java.util.Vector java.util.Vector

map java.util.Map java.util.HashMap

hashtable java.util.Hashtable java.util.Hashtable

sortedset java.util.SortedSet java.util.TreeSet 1.0 M2

Castor JDO

Castor (1.3.3) 136

iterator java.util.Iterator n/a 1.0 M3

The type of the object inside the collection is the 'type' attribute. The 'default implementation' is the type used
if the object holding the collection is found to be null and needs to be instantiated.

For hashtable and map, Castor will add an object using the put(object, object) method - the object is both the
key and the value. This will be improved in the future.

It is necessary to use a collection when the content model of the element expects more than one element of the
specified type. This is how the 'to-many' portion of a relationship is described.

Note

It is not possible to use a collection of type 'iterator' or 'enumerate' with lazy loading enabled.

2. Determine the signature of the method

• If 'direct' is set to true, Castor expects to find a public Java object variable with the given signature:

public <type> <name>;

• If 'direct' is set to false or omitted, Castor will access the property though accessor methods. Castor
determines the signature of the accessors and mutators as follows: If the 'get-method' or 'set-method'
attributes are supplied, it will try to find a function with the following signature:

public <type> <get-method>();

or

public void <set-method>(<type> value);

If 'get-method' or 'set-method' attributes are not provided, Castor will try to find the following functions:

public <type> is<capitalized-name>();

or

public <type> get<capitalized-name>();

the former for boolean types, the latter for all other types (or if the 'is<capitalized-name>()' method is not
defined for a boolean type), and a standard set method of

public void set<capitalized-name>(<type> value);

If there are more than one set<capitalized-name> method it first tries to find the one that exactly matches
<type>. If no such method is available and <type> is a java primitive type it tries to find a method with the
corresponing java object type.

Castor JDO

Castor (1.3.3) 137

<capitalized-name> means that Castor uses the <name> attribute by changing its first letter to uppercase
without modifying the other letters.

The content of the <field> element will contain the information about how to map this field to the relational
table.

Description of the attributes:

• name: If 'direct' access is used, 'name' should be the name of a public variable in the object we are mapping
(the field must be public, not static and not transient). If no direct access and no 'get-/set-method' is specified,
this name will be used to infer the name of the accessor and mutator methods.

• type: The Java type of the field. This is used to access the field. Castor will use this information to cast the
data type(e.g. string into integer). It is also used to define the signature of the accessor and mutator methods.
If a collection is specified, this is used to specify the type of the object inside the collection. See description
above for more details.

• required: If true, the field is not optional.

• transient: If true, the field will be ignored during persistence (and XML un-/marshalling). If you want this
field to be ignored during any persistence-related operations only, please use the 'transient' attribute at the
<sql> level.

• identity: If true, the field is part of the class identity. Please use this as an alternative way of specifying the
identity of an object.

• direct: If true, Castor expects a public variable in the object and will modify it directly.

• collection: If a parent object expects more than one occurrence of one of its fields, it is necessary to specify
which collection type Castor will use to handle them. The type specified is used to define the type of the
content inside the collection.

• comparator: If the collection type equals 'sortedset', it is possible to specify a java.util.Comparator

instance that will be used with the java.util.SortedSet (implementation) to specify a custom sort order.
Please use this attribute to specify the class name of the Comparator instance to be used. Alternatively, it is
possible to not specify a Comparator instance and have the Java objects stored in the SortedSet implement
java.util.Comparable to specify the sort order.

• get-method: An optional name of the accessor method Castor should use. If this attribute is not set, Castor
will try to guess the name with the algorithm described above.

• set-method: An optional name of the mutator method Castor should use. If this attribute is not set, Castor
will try to guess the name with the algorithm described above.

• create-method: Factory method for instantiation of the object.

3.6.3.5. The <sql> element

<!ELEMENT sql EMPTY>
<!ATTLIST sql

name NMTOKENS #IMPLIED
type NMTOKENS #IMPLIED
many-key NMTOKENS #IMPLIED
many-table NMTOKEN #IMPLIED
transient (true | false) "false"

Castor JDO

Castor (1.3.3) 138

read-only (true | false) "false"
dirty (check | ignore) "check">
cascading (create | delete | update | all | none) "none"

The <sql> element is used to denote information about the database column to which a Java object is mapped.
It should be declared for all <field> elements. Each <field> element contains one <sql> element. The <sql>
element correlates directly to the <map-to> element for the containing <class> element. The <sql> elements
contains the following attributes:

• name: The name of the column in the database table.

• type: The JDBC type of the column. It is inferred from the object when the type of this field is a persistent
Java class that is defined elsewhere in the mapping. The complete list of automatic type conversions, and
which values require manual mapping (e.g, java.util.Date) is listed in the SQL Type Conversion section of
the Type Support document.

• read-only: If true, the column in the relational database table will only be read, not updated or deleted.

• transient (as of 0.9.9): If true, the field will be ignored during persistence only. If you want this field to be
ignored during XML un-/marshalling as well, please use the 'transient' attribute at the <field> level.

• dirty: If the value is 'ignore', the field will not be checked against the database for modification.

• cascading: If the field is a relation, this attribute specifies which operations to cascade. Possible values are:
'all', none', 'create', 'update' or 'delete'; when not specifying 'none' or 'all', it is possibel to specify more than
one value, using whitespace as a delimiter (e.g. 'create update'). For further information see HOW-TO on
using cascading operation.

There are two more attributes used only with 'to-many' relations.

• many-key: Specifies the name of the column that holds the foreign key to this object. That column is in the
database table that stores objects of the Java type of this field.

• many-table: Specifies the name of the bridge table that contains the primary keys of the object on each side
of the relationship. This is only used for many-to-many relationships.

3.7. Castor JDO FAQ

3.7.1. Castor's relation to other specifications

3.7.1.1. Does Castor JDO comply with the SUN JSR-000012 specification?

No, Castor JDO doesn't comply with the SUN's JDO specification.

Although Castor JDO carries very similar goals as SUN's JDO, it has been developed independently from the
JSR.

Although it is not impossible to shape (perhaps "hammer" is a more descriptive verb) Castor JDO into the
SUN's JDO specification, there are several major technical differences which make it unfavorable to do so.
Castor is RDBMS centric. Each persistence object loaded by Castor is locked. Locks in Castor are observable,
meaning that locks may not be granted because of timeout or deadlock. On the other hand, the SUN's JDO
hides details about locks.

Castor JDO

Castor (1.3.3) 139

Internally, Castor JDO maintains a single copy of lock (and cache) for each active persistence object for all
transaction. SUN's JDO specification implicitly requires a copy of cache per object per transaction. SUN's JDO
also implicitly requires a bytecode modifier which Castor doesn't require.

Castor also provides other features, such as key generators, long transaction support and OQL query which
cannot be found in SUN's JSR.

3.7.1.2. Is Castor JDO better than EJB CMP?

The relation between JDO and EJB Container-Managed Persistence is more complicated than simply saying,
"one is better than the other".

An Entity Bean may manage persistence itself - the EJB specification calls this Bean Managed Persistence
(BMP). Alternatively, the Entity Bean may rely on an EJB container to manage all peersistence automatically -
the EJB specification calls this Container Managed Persistence (CMP). When implementing BMP, an Entity
Bean may use Castor JDO as its persistence mechanism, or it may use others methods, such as dealing with
JDBC directly. During CMP, an EJB Container vendor may implement their CMP on top of Castor JDO. In
such an implementation, Castor JDO will be used to persist the Entity Bean.

If a developer would like to take advantage of an EJB's life-cycle management, security, the "write once deploy
anywhere" promise and other distributed business application facilities, then EJB will be the right choice.
Otherwise, the fact that Castor is simple, is Open Source (you can always include Castor in your application or
product), has much less overhead, provides more design freedom, and is integrated with Castor XML may be
enough of a reason to choose Castor JDO.

3.7.2. XML related questions

3.7.2.1. Is it possible to make XML marshalling transactionally using Castor?

No. The decision of putting XML and JDO together is NOT intended to make XML marshalling transactional.
Instead, the integration is done to help developers of a typical client-server situation whereby an application
server receives incoming XML messages, process the messages and replies to the client.

With Castor, incoming XML messages can be unmarshaled into data objects. Required information can be
obtained from a database using JDO in form of data objects. With this approach, all data manipulation can be
done in an object-oriented way. Changes to JDO data objects can be committed transactionally, and result data
objects can be marshaled into XML and returned to the client.

3.7.2.2. Is it possible to do queries on a XML file using Castor?

No, Castor does not provide an OQL query facility on a XML file. If querying is important for you, you should
consider using a DBMS to store your data instead of using XML files, especially if querying performance is a
concern.

Another alternative is parse an XML Document directly and use XPath to retrieve Nodes and/or NodeSets from
an XML Document. Other open source tools which provide this functionality are:

• SAXPath

• Jakarta Commons JXPath

Castor JDO

Castor (1.3.3) 140

http://sourceforge.net/projects/saxpath/
http://jakarta.apache.org/commons/jxpath/index.html

3.7.3. Technical questions

3.7.3.1. Where can I find some examples to start with?

Download the full SVN snapshot and look into the src/tests/jdo directory.

3.7.3.2. I have encountered problems using Sun JDBC-ODBC bridge with Castor...

It cannot be used with Castor, because it doesn't allow more than one open ResultSet at the same time. Either
use JDBC driver of type > 1, or use some other JDBC-ODBC bridge without such a restriction (for example,
from Easysoft).

3.7.3.3. My get-method for the Collection of dependent objects returns null. Why?

You should initialize the Collection yourself:

private Collection _children = new ArrayList();

public Collection getChildren() {
return _children;

}

3.7.3.4. Should my JDO classes implement some special interface?

In general, no. If you need some behavior that is not directly supported by Castor, you can implement interface
org.exolab.castor.jdo.Persistent. In order to use dirty checking for long transaction you should implement
interface org.exolab.castor.jdo.TimeStampable. If you need an example of use of these interfaces, see
Persistent.java and TestPersistent.java among Castor JDO tests.

3.7.3.5. Can Castor automatically create/remove related objects?

First of all, let's agree upon terminology. We distinguish dependent and independent objects:

• dependent objects are bounded to the parent object's lifecycle

• independent objects have independent lifecycle

Thus, dependent objects are created/removed automatically, when their parent object is created/removed, while
all operations on independent objects should be performed explicitly.

However, with Castor 0.8.x you cannot describe explicitly the kind of object. Instead, the following rule
applies: if you have one-to-many relation, and each side of the relation refers to another (Collection attribute on
"one" side, simple attribute on "many" side), then "many" side is a dependent object. All other objects are
independent. In particular, related objects via one-to-one relation are not created/removed automatically.

With Castor 0.9 dependent objects should be described via "depends" attribute of "class" element in mapping
configuration file.

If you wish some independent object was created and/or removed automatically on operations on other
independent object, you may use interface Persistent to code the desired behavior.

3.7.3.6. Is Castor JDO using any connection pooling mechanism to improve the overall
performance?

Castor JDO

Castor (1.3.3) 141

http://www.easysoft.com

No, Castor JDO doesn't have any built-in JDBC resource pooling. However the framework can transparently
use any resource pooling facilities provided through DataSource implementation or -even better- through JDNI.
In fact we even recommend people to use some Connection and PreparedStatement pool with Castor as this can
increase Castor's performance 3-5 fold.

For example the following set of statements:

db.begin();
db.execute(...)
db.commit()

will be executed in much less time with the resource pooling because it will avoid creating a new physical
JDBC connection at every execution.

With Oracle, instead of specifying the usual JDBC driver you can use a DataSource that specifically provides
some Connection caching/pooling.

Thus if your jdo config file looks like :

<database name="..." engine="oracle" >
<driver class-name="oracle.jdbc.driver.OracleDriver"

URL="jdbc:oracle:thin:@localhost:1521:TEST" >
<param name="user" value="SYSTEM"/>
<param name="password" value="manager"/>

</driver>
...

</database>

then it can be changed into (for example):

<database name="..." engine="oracle" >
<data-source class-name="oracle.jdbc.pool.OracleConnectionCacheImpl">

<params URL="jdbc:oracle:thin:@localhost:1521:TEST"
user="scott"
password="tiger"

/>
</data-source>
...

</database>

When Castor is used inside a Container such as an EJB container (within BMP or Session Bean), then the
Container usually provides the JDBC resource through the JNDI ENC, which implicitely includes pooling
facilities.

3.7.3.7. I am getting ClassNotFoundException for my JDO class, but it is in the class path.
Why?

Probably castor.jar file is in jre/lib/ext directory. In this case you should call:

jdo.setClassLoader(getClass().getClassLoader());

before jdo.getDatabase().

3.7.3.8. I am getting exception 'the class ... is not persistence capable...'. Why?

Castor JDO

Castor (1.3.3) 142

In this case as well as in many others you can get more information with the help of logging. Call:

jdo.setLogWriter(Logger.getSystemLogger());

and seek in the output for warnings and errors.

3.7.3.9. I call db.remove() on the dependent object and commit, but this doesn't work...

You should not add/remove dependent objects directly. In order to add/remove the dependent object you should
just add/remove it from the collection in the master object and call db.commit()

Dependent objects cannot be created/removed explicitly. It's created automatically when it is added to a master
object, and removed automatically when it de-linked/dereferenced from a master object.

Otherwise, we will be encounter into problem where a dependent object created explicitly but removed
implicitly (delinked from a master object), or vice versa. It can also lead to other problems that are harder to
detect.

3.7.3.10. How should I represent string/date/boolean literals in OQL query?

It is recommended to replace literals with parameters and to set them via OQLQuery.bind(), for example:

OQLQuery query = db.getOQLQuery(
"SELECT p FROM Person p "

+ "WHERE name LIKE $1 AND dob>$2 AND married=$3");
query.bind("John %");
query.bind((new SimpleDateFormat("yyyy-MM-dd"))

.parse("1960-01-01"));
query.bind(false);

3.7.3.11. I get 'java.lang.AbstractMethodError: getBigDecimal' for numeric fields. Why?

Your JDBC driver is not JDBC 2.0 compliant, upgrade it or find another one.

3.7.3.12. Does Castor support both one-way and two-way relationships?

Typcially a relationship between two objects is either one-way (aka uni-directional) or two-way (aka
bi-directional). Officially, Castor currently only supports bi-directional relationships. For example, if an Order

object contains a reference to a LineItem object, the LineItem object must contain a reference to the Order
object. However, this requirement is not enforced in all situations.

This is a very complex problem to solve. So until Castor is expanded the support uni-directional relationships,
the best policy is to implement the bi-directionalality for all relationships. This will ensure proper functionality.

3.7.3.13. I have an object that holds a relation to itself. Does Castor support this?

This is a very common occurrence in an object model and is known as a self-referenential relationship.
Unfortunately, Castor does not currently support self-referential relationships. An example of such a
relationship occurs when a Folder object contains a reference to another Folder object. Castor does not
currently support this. However, there are ways around this limitation.

One way is to manage this type of relationship manually. For example, let's say that a parent object FolderA

Castor JDO

Castor (1.3.3) 143

needs to hold references to child objects FolderB, FolderC and FolderD. The Folder object contains not only a
property to hold its own id, but also a property to hold its parent id (we'll call this parentId). The parentId

property is used to determine if there is a relationship to another Folder object. If parentId is null, there is no
relationship. If parentId is populated, there is a relationship and the object tree can be walked by comparing
the object id to the parentId. When the two properties are equal, you're at the top of the tree.

Another say to solve this problem is to make use of an intermediary object. For example, a Folder object
contains a Reference object in lieu of the actual Folder object. The Reference object is somewhat of a proxy
object whereby it only contains enough information to identify the object to which the Reference object refers.
Then the Folder object can be easily instantiated via the information contained in the Reference object.

3.7.3.14. Why do I get an ObjectModifiedException when trying to commit a transaction?

The dirty checking engine will throw an ObjectModifiedException when the values in the cache and in the
database are different. This can happen when someone else changed the database content, but also when type
mapping is not reversible.

For example, if a java timestamp (java.util.Date) is stored as a DATE, the time part is lost and the dirty
checking will fail. Oracle cannot tell the difference between an empty String and a null value: if an attribute
value is an empty String, dirty checking will also fail. Some precision loss sometimes occur with floating point
numbers.

To avoid this, always use reversible mapping conversions. If this is not possible, mark the fields with
dirty="ignore" in the mapping file.

3.7.3.15. I'm receiving a java.sql.SQLException: ORA-01461

When using Weblogic Portal 4.0 with Oracle I am receiving the following error:

java.sql.SQLException: ORA-01461: can bind a LONG value only for insert into a LONG column

According to Weblogic Release Notes, this error can remedied by setting a Weblogic environment variable.

3.7.4. Castor and performance caches

3.7.4.1. Sometimes long transaction fails: on update() it is thrown ObjectModifiedException.
Why?

Most probably the object that is being updated has more than 100 related objects of one class and the cache size
for this class is not enough. You should either increase the size of the cache or change the cache type to
time-limited (the default cache type is count-limited, the default size is 100), for example:

<class ...>
<cache-type type="count-limited" capacity="1000"/>
...

</class>

3.7.4.2. Can I use the cache-type='none' with long transactions?

As of release 0.9.5.3, you cannot. When using a cache of type 'none' with your 'Timestampable' objects, a
MappingException is thrown when performing long transactions. Currently, Castor requires a (performance)

Castor JDO

Castor (1.3.3) 144

cache of type other than 'none' to be used with classes that implement the TimeStampable interface. In other
words, if you want to use long transactions, please make sure that you use one of these cache types: 'unlimited',
'count-limited' or 'time-limited'.

The next entry has some more information about a potential cause of confusion in the context of long
transactions and a cache type other than 'unlimited'.

3.7.4.3. What is causing a PersistenceException with long transactions and how do I fix it?

With long transactions, sometimes update() throws a PersistenceException. As of release 0.9.5.3, Castor
requires a (performance) cache (of type other than 'none') to be used with classes that implement the
TimeStampable interface.

Please note that if you are using a cache type other than 'unlimited', it is possible that objects expire from the
cache. This case will be highlighted to you by a PersistenceException being thrown.

In this cases, please consider switching to cache type 'unlimited' (if possible) or increase the size of the cache
according to your needs when using 'count-limited' (which has a default capacity of 100).

3.7.5. OQL

3.7.5.1. Is there any document available for Castor OQL?

Yes. It is available from the Castor website: Advanced JDO —> OQL

3.7.5.2. The OQL document describes several phases of development. Which is the current
phase?

We are currently working on Phase 3.

3.7.5.3. Does Castor OQL support sub-queries?

Not yet

3.7.5.4. I cannot get Castor OQL to join two objects for me. Is it supported?

Yes or no. Castor OQL supports implicit joins. And, in most case, you simply don't need explicit join.

Consider the following example,

SELECT o FROM Order o, LineItem i WHERE o.id = i.id AND i.price > 100

It is simply equivalent to the following OQL

SELECT o FROM Order o WHERE o.lineItem.price > 100

3.7.5.5. Can I write a pass-thru OQL?

Yes. Just put "CALL SQL" keywords in front of your SQL statement. For example,

Castor JDO

Castor (1.3.3) 145

OQLQuery oql = castorDb.getOQLQuery(
"CALL SQL SELECT id, name, date "
+"FROM user WHERE upper(name) like $1 AS myapp.Product");

But remember that the order of the fields listed must match what is defined in the mapping file.

3.7.5.6. Does Castor OQL support struct?

No, Castor OQL doesn't support struct. For example, the following query CANNOT be done:

select c.name, c.age from Client c

3.7.5.7. How do I structure a query using the 'LIKE' expression?

A query using the 'LIKE' expression includes the use of the SQL wildcard '%'. The wildcard must be included
in the bind() statement:

OQLQuery oql = castorDb.getOQLQuery(
"SELECT p FROM Product p WHERE p.name LIKE $1");

oql.bind("%widget%");

3.7.5.8. Does Castor support the SQL 'IN' expression?

Yes. However, the full expression is a bit different using the LIST keyword. The following example provides a
demonstration:

SELECT p FROM Product p WHERE p.id IN LIST (123, 456, 789)

If identifiers other than numbers are used, those identifiers must be quoted:

SELECT p FROM Product p WHERE p.name IN LIST ("abc", "jkl", "xyz")

To include NULL values in the 'IN' list, use the 'nil' keyword:

SELECT p FROM Product p WHERE p.name IN LIST("ABC", nil)

It is even possible to include bind values in the 'IN' lists using the following syntax:

SELECT p FROM Product p WHERE p.id IN LIST($(int)1, $2, $3)

3.7.6. Features requests

Castor JDO

Castor (1.3.3) 146

3.7.6.1. Can a foreign key be part of multiple primary keys?

Unfortunately, the answer is no. We're aware that many users need this feature so it is a very high priority in
our todo list.

If foreign key is the primary key, as a workaround you may consider using the 'extends' relationship.

3.7.6.2. Is polymorphic collection supported?

Unfortunately, the answer is no.

In version 0.8.11, we tried to enable polymorphic collection by introducing the notation of Object Reloading.
Object Reloading delegates the determination of the class to a data object. However, it is proved that reloading
can only be done before any instance of the target object is returned to user, and we have no way to determine
that. As a result, we removed the support in version 0.9.x.

In the near future, we are going to use a new mechanism to provide extends. The new mechanism loads a table
with an SQL statement that outer-joins all of the extending tables with the base. The existence of an extended
table row can be used to determine the class of a data object. Notice that all extended table rows of the same
entity should always be stored in the same data-store.

In the further future, we also want to let users to define a discriminator column (or determinance field). Basing
on the value of discriminator columns in the base table, the bridge layer fetches the additional information and
returns the combined entity with the appropriate list of entity classes.

3.7.7. Data model issues

3.7.7.1. Is it possible to map an object to more than one tables?

Yes, if the two tables share the same identity, you can specify one data object to "extends" the other. When the
extended data object is loaded, its table (specified in <map-to/> will be joined with all the tables of its super
classes'.

Another solution (in my opinion more flexible) is having two set of methods in the main object. One for Castor
JDO and another for application.

Consider the following example:

class Employee {
private int _employeeNumber;
private Address _address;
private Collection _workGroup;

public int getEmployeeNumber() {
return _employeeNumber;

}
public void setEmployeeNumber(int id) {

_employeeNumber = id;
}

// methods for Castor JDO
public Address getAddress() {

return _address;
}
public void setAddress(Address address) {

_address = address;
}
public Collection getWorkGroup() {

return _workGroup;

Castor JDO

Castor (1.3.3) 147

}
public Collection setWorkGroup(Collection workGroup) {

_workGroup = workGroup;
}

// methods for application
public String getAddressCity() {

return _address.getCity();
}
public String getAddressZip() {

return _address.getZip();
}
// ...

}

3.7.7.2. Can an object with the same identity be re-created after being removed in the same
transaction?

Yes, as long as the deleted object is the same instance as the one being recreated.

3.7.7.3. What is a dependent object?

Dependent object is actually a concept from the object-oriented database world. A dependent object's lifetime
depends on its master object. So, create/delete/update of the master object will trigger the proper actions, newly
linked dependent object will be automatically created and de-referenced dependent object will be removed.

The concept was also used in the earlier CMP 2.0 draft, although it is later removed.

3.7.7.4. Can a data object involved in many-to-many relationship be dependent?

No

3.7.8. Castor JDO design

3.7.8.1. How does Castor JDO work anyway?

Let's use object loading as an example.

When an application invoke db.load, the underneath TransactionContext is invoked. If the object with the
requested identity exists in the TransactionContext, previously loaded object in the TransactionContext is
returned. Otherwise, TransactionContext creates a new instance of the interested type and invokes
LockEngine to "fill" the object.

LockEngine acquires a lock of the object, and it makes sure ClassMolder has a thread-safe environment when it
invokes ClassMolder. In ClassMolder, if the interested set of fields representing the object is not existed in the
cache yet, SQLEngine will be invoked and the set of fields from the underneath data store will be returned.
ClassMolder binds the loaded or cached fields into the new instance. ClassMolder requests the
TransactionContext to load the related and the dependent objects. Eventually, the object is returned after all
of the relationships are resolved.

The process of commit has several states. The first state is preStore. In preStore state, objects existing in the
TransactionContext are checked for modification one by one, including dependent and related objects.
De-referenced dependent objects are marked as delete-able, and reachable dependent objects are added into
TransactionContext. An object is marked "dirty" if it is modified. Also, if any modification should cause any
related or dependent to be dirty, the related or dependent object is marked as dirty as well.

Castor JDO

Castor (1.3.3) 148

After the preStore state, all dirty object is properly stored. And, all marked delete object will be removed. Then,
the connection is committed. If succeed, all cache with be updated. Finally, all lock is released.

3.7.8.2. Does Castor support two-phase commits? How is this implemented?

Yes, via javax.transaction.Synchronization interface.

For Castor to work with global transactions, Castor must be configured to use global transaction demarcation in
its main configuration file:

<jdo-conf>
...
<transaction-demarcation mode="global" >

<transaction-manager name="jndi" />
</transaction-demarcation>

</jdo-conf>

When retrieving a Database instance via

...
JDOManager.loadConfiguration("jdo-conf.xml");
JDOManager jdo = JDOManager.createInstance("mydb");
...
Database db = jdo.getDatabase();

the Database implementation will authomatically be registered with the transaction manager, as it implements
javax.jta.Synchronization interface. Subsequently, the transaction manager communicates with Castor via the
beforeCompletion() and afterCompletion() calls.

3.7.8.3. Does Castor support nested transaction?

No

3.7.9. Working with open source databases

3.7.9.1. Does Castor support PosgreSQL?

Yes, starting from PostgreSQL 7.1, where outer joins support has been added.

3.7.9.2. Does Castor support MySQL?

Yes, starting from MySQL version 3.23, where transaction support has been added. Note: if you use Mark
Matthews MySQL JDBC driver, then you need version 2.0.3 or higher.

3.7.9.3. Which Open Source database is supported better?

For now only with PostgreSQL 7.1 and SAP DB you get a full set of Castor features. Other Open Source
databases don't support select with write lock, so db-locked locking mode doesn't work properly (it works in the
same way as exclusive locking mode).

All other Castor features are supported with MySQL, Interbase, InstantDB and Hypersonic SQL.

Castor JDO

Castor (1.3.3) 149

http://www.postgresql.org
http://www.sapdb.org
http://www.mysql.com
http://www.interbase2000.org
http://instantdb.enhydra.org
http://www.hypersonicsql.com

3.7.10. RDBMS-specific issues

3.7.10.1. MySQL

3.7.10.1.1. Use of DATETIME fields in general

MySQL in it's current releases (4.0.x and 4.1.x) does not store fractions of a second in fields of type
DATETIME that are mapped to java.sql.TimeStamp fields. As a result, Castor will throw
ObjectModifiedExceptions during commits as Castor internally maintains fractions of a seconds.

Instead, Please use a column type that can be mapped to a long value, as Castor internally handles conversion
between java.util.Date and long values with the required precision.

3.7.10.1.2. Use of TIMESTAMP fields & NULLs in long transactions

In MySQL, fields of type 'Timestamp' exhibit special behaviour wih regards to NULLs. When inserting a
"NULL" into such a field, it actually inserts the current date and time. This causes problems for Castor's
caching mechanism since Castor internally believes the field is still NULL. If you subsequently perform an
update on the entry whilst it is still in the cache, an ObjectModifiedException will be thrown, because Castor
believes that the database record has changed in the meantime.

The workaround is to use a DATETIME field instead of TIMESTAMP.

3.7.10.1.3. MySQL 4.1.x and upgrade issues

As with many other open source products, MySQL seems to be changing slightly from version to version.
There seems to be a problem with concurrency in MySQL 4.1.5 that can be resolved by upgrading to 4.1.7 or
higher.

At Castor we frequently use Connector/J 3.0.16, 3.1.13 and nowadays 5.1.6 to execute our test farmework. If
you use one of this versions of Connector/J you should be on the safe side. If you are hit by any problems using
one of these versions, please let us know.

3.7.10.2. Oracle

3.7.10.2.1. Oracle & (C|B)LOB fields

As of Oracle release 10g, the problem of Castor to handle BLOBs with a size greater than 2kB and CLOBs
with a size greater than 4 kB correctly has been resolved. With the 10 release of Oracle's JDBC driver, both
driver types (type 2 and type 4) can be used. With earlier releases, only the OCI driver (type 2) seems to work.

The 10g release of the Oracle JDBC Driver can be downloaded here.

3.7.11. Castor & Logging

3.7.11.1. How can I integrate Castor's logging with a logging infrastructure using Log4J?

Please see this message from the mailing list. It includes an adapter class that will provide this functionality.
(Thanks John!)

3.7.11.2. Can I see what SQL statement Castor issues to the database as a result of an
operation?

Castor JDO

Castor (1.3.3) 150

http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.mail-archive.com/castor-dev@exolab.org/msg02710.html

Yes, you can. By default, Castor uses JDBC proxy classes (wrapping java.sql.Connection and
java.sql.PreparedStatement) that capture the core SQL statements as generated by Castor and the
user-supplied parameters at execution timeof the various persistence operations, and outputs them to the
standard logger used by Castor. By default, these output statements are not visible, as the log level is set to
level 'info'. To see these SQL statements, please increase the log level to level 'debug' in log4j.xml.

3.7.11.3. How can I disable the use of JDBC proxy classes?

As of release 0.9.7, a new property

org.exolab.castor.persist.useProxies

has been added to castor.properties to allow configuration of the JDBC proxy classes mentioned above. If
enabled, JDBC proxy classes will be used for logging SQL statements. When turned off, no logging statements
will be generated at all.

3.7.12. Lazy Loading related questions

3.7.12.1. How do I configure the JDO mapping to use the lazy loading feature for 1:1
relations?

Let us convert one of the classes from the JDO examples to use lazy-loading.

In the example model, every Product belongs to one ProductGroup. This is reflected in the conventional
mapping as below. Here's the mapping for Product:

<!-- Mapping for Product -->
<class name="myapp.Product"

identity="id">
<description>Product definition</description>
<map-to table="prod" xml="product" />
<field name="id" type="integer">

<sql name="id" type="integer" />
<xml name="id" node="attribute"/>

</field>

<!-- more fields ... -->

<!-- Product has reference to ProductGroup,
many products may reference same group -->

<field name="group" type="myapp.ProductGroup">
<sql name="group_id" />
<bind-xml name="group" node="element" />

</field>

</class>

Let us now make the relationship between Product and ProductGroup use lazy loading. The relevant field in
Product can be re-written like so:

<field name="group" type="myapp.ProductGroup" lazy="true">
<sql name="group_id" />
<bind-xml name="group" node="element" />

</field>

There have been one change only. We have placed the attribute lazy="true" in the field element. Note that no
change is required in the ProductDetail mapping.

Castor JDO

Castor (1.3.3) 151

http://castor.org/examples.html

3.7.12.2. Lazy loading for 1:1 relations and serialization

Please note that Castor does not support full serialization of lazy-loaded objects at this time. Rather than
serializing just the information required to re-build the underlying proxy implementation during deserialization,
Castor will materialize (read: load from the persistence store) all objects before serialization. As this can lead to
a lot of database accesses, please use this feature carefully. A full working solution will be provided with the
next release.

3.7.12.3. How do I configure the JDO mapping to use the lazy loading feature for 1:m and M:N
relations?

Let us convert one of the classes from the JDO examples to use lazy-loading.

In the example model, one Product can contain many ProductDetails. This is reflected in the conventional
mapping as below. First, the mapping for Product:

<!-- Mapping for Product -->
<class name="myapp.Product"

identity="id">
<description>Product definition</description>
<map-to table="prod" xml="product" />
<field name="id" type="integer">

<sql name="id" type="integer" />
<xml name="id" node="attribute"/>

</field>

<!-- more fields ... -->

<!-- Product has reference to ProductDetail
many details per product -->

<field name="details" type="myapp.ProductDetail" required="true"
collection="vector">

<sql many-key="prod_id"/>
<xml name="detail" node="element" />

</field>
</class>

Now let us examine ProductDetail. Note, the relationship is mapped bi-directionally as must be all relationships
when using Castor JDO.

<!-- Mapping for Product Detail -->
<class name="myapp.ProductDetail" identity="id" depends="myapp.Product" >

<description>Product detail</description>
<map-to table="prod_detail" xml="detail" />
<field name="id" type="integer">

<sql name="id" type="integer"/>
<xml node="attribute"/>

</field>
<field name="product" type="myapp.Product">

<sql name="prod_id" />
<xml name="product" node="element" />

</field>

<!-- more fields ... -->

</class>

Let us now make the relationship between Product and ProductDetail use lazy loading. We need only change
the way that the relationship to ProductDetail is specified in the mapping of Product. The relevant field in
Product can be re-written like so:

Castor JDO

Castor (1.3.3) 152

http://castor.org/examples.html

<field name="details" type="myapp.ProductDetail" required="true" lazy="true"
collection="collection">

<sql many-key="prod_id"/>
<xml name="detail" node="element" />

</field>

There have been two changes.

• We have placed the attribute lazy="true" in the field element

• We have changed the type of the underlying collection type to be a java.util.Collection by changing the
field element attribute to collection="collection".

Note that no change is required in the ProductDetail mapping.

3.7.12.4. I have modified my mapping to use lazy loading. Now I get the error 'no method to
set value for field: com.xyz.ClassB in class: ClassMolder com.xyz.ClassA' or
'org.exolab.castor.jdo.DataObjectAccessException: no method to set value for field:
com.xyz.ClassB in class: ClassMolder com.xyz.ClassA'. What am I doing wrong?

To use lazy loading you must also change the persistent class that will hold the related objects. At the very
highest level, you need to provide a set method that accepts a java.util.Collection for the field in question. This
is demonstrated by changing the JDO examples below.

In the original Product class we have the following code:

import java.util.Vector;
...
private Vector _details = new Vector();
...
public Vector getDetails()
{

return _details;
}

public void addDetail(ProductDetail detail)
{

_details.add(detail);
detail.setProduct(this);

}

Let us now make the necessary changes to set up lazy loading. As stated above we now require a special set
method for the related ProductDetails (stored originally as a java.util.Vector) that accepts a
java.util.Collection as an argument. This mandates that we must also use a java.util.Collection to hold
our ProductDetails. If this is not added, you will receive the errors above.

import java.util.Collection;
...
private Collection _details;
...
public Collection getDetails()
{

return _details;
}

public void setDetails(Collection details)

Castor JDO

Castor (1.3.3) 153

http://castor.org/examples.html

{
_details = details;

}

3.7.13. Tuning for LOBs

Castor JDO provides a property in castor.properties for adjusting the size of the JDBC driver's buffer for
reading LOBs (BLOBs and CLOBs) from the database. The propery is named
org.exolab.castor.jdo.lobBufferSize and its default is 5120 bytes (5k). The size of this buffer can be tuned
for larger LOBs, but is dependent upon the JDBC driver implementation being used and what it supports.

3.7.14. Database-specific issues

3.7.14.1. HSQL and identity key generators

Due to a product limitation, AUTO_INCREMENT sequences in HSQL begin with 0 rather 1, as is the case
with most other RDBMS. As a result of this, long transactions will not work for the object with the identity 0,
and a ObjectModifiedException will be thrown.

To avoid this issue, we recommend inserting a temp object into the database in question, and removing
thereafter so that no object with identity 0 is stored.

3.7.15. Changing database configurations

Some applications need to change the database connection or switch between different mapping files on the fly.
Because Castor caches database configurations per name, you would have to register a new JDO configuration
using a distinct name for any of the different configurations.

Instead you can call org.exolab.castor.jdo.engine.DatabaseRegistry.clear() to reset the database
registry before registering the new configuration as follows:

// Reset database registry
org.exolab.castor.jdo.engine.DatabaseRegistry.clear();

3.8. Castor JDO code samples
Werner Guttmann <werner DOT guttmann AT gmx DOT net>

3.8.1. Introduction

This document provides object mapping examples and the corresponding Java objects and DDL for the
database table.

3.8.1.1. Java class files

The following fragment shows the Java class declaration for the Product class:

package myapp;

Castor JDO

Castor (1.3.3) 154

public class Product {

private int _id;

private String _name;

private float _price;

private ProductGroup _group;

public int getId() { ... }

public void setId(int anId) { ... }

public String getName() { ... }

public void setName(String aName) { ... }

public float getPrice() { ... }

public void setPrice(float aPrice) { ... }

public ProductGroup getProductGroup() { ... }

public void setProductGroup(ProductGroup aProductGroup) { ... }
}

The following fragment shows the Java class declaration for the ProductGroup class:

public class ProductGroup {

private int _id;

private String _name;

public int getId() { ... }

public void setId(int id) { ... }

public String getName() { ... }

public void setName(String name) { ... }

}

3.8.1.2. DDL

The following sections show the DDL for the relational database tables PROD, PROD_GROUP, and
PROD_DETAIL:

PROD:

create table prod (
id int not null,
name varchar(200) not null,
price numeric(18,2) not null,
group_id int not null

);

PROD_GROUP:

create table prod_group (
id int not null,
name varchar(200) not null

);

Castor JDO

Castor (1.3.3) 155

PROD_DETAIL:

create table prod_detail (
id int not null,
prod_id int not null,
name varchar(200) not null

);

3.8.1.3. Object Mappings

The following code fragment shows the object mapping for the ProductGroup class:

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Object Mapping DTD Version 1.0//EN"

"http://castor.org/mapping.dtd">
<mapping>

<class name="myapp.ProductGroup" identity="id">

<description>Product group</description>

<map-to table="prod_group" xml="group" />

<field name="id" type="integer" >
<sql name="id" type="integer"/>

</field>

<field name="name" type="string">
<sql name="name" type="char" />

</field>

</class>

</mapping>

As a result of that declaration, Castor JDO will create the following SQL statements for creating, deleting,
loading and updating instances of ProductGroup:

create: INSERT INTO prod_group (id, name) VALUES (?,?)
delete: DELETE FROM prod_group WHERE id=?
load: SELECT prod_group.id, prod_group.name FROM prod_group WHERE prod_group.id=?;
update: UPDATE prod_group SET name=? WHERE id=?

3.8.1.3.1. Read-only fields

To declare the name field read-only, the field definition above for the field name needs to be changed to:

<class name="myapp.ProductGroup" identity="id">

...
<field name="name" type="string">
<sql name="name" type="char" read-only="true" />

</field>

</class>

As a result of that declaration, Castor JDO creates the following SQL statements for creating, deleting, loading
and updating instances of ProductGroup:

Castor JDO

Castor (1.3.3) 156

create: INSERT INTO prod_group (id) VALUES (?)
delete: DELETE FROM prod_group WHERE id=?
load: SELECT prod_group.id, prod_group.name FROM prod_group WHERE prod_group.id=?;
update: /* no statement will be generated */

3.8.1.3.2. Transient fields

To declare the name field transient with regards to persistence, above field definition for the field name needs
to be changed to:

<class name="myapp.ProductGroup" identity="id">

...
<field name="name" type="string" >
<sql name="name" type="char" transient="true" />

</field>

</class>

3.8.1.4. Relations

3.8.1.4.1. 1:1 relation

The following code fragment shows the mapping file for the Product class. Apart from the simple field
declarations, this includes a simple 1:1 relation between Product and ProductGroup, where every product
instance is associated with a ProductGroup:

<class name="myapp.Product" identity="id">

<map-to table="prod" />

<field name="id" type="integer">
<sql name="id" type="integer" />

</field>

<field name="name" type="string">
<sql name="name" type="char" />

</field>

<field name="price" type="float">
<sql name="price" type="numeric" />

</field>

<field name="group" type="myapp.ProductGroup" >
<sql name="group_id" />

</field>

<field name="details" type="myapp.ProductDetail"
collection="vector">

<sql many-key="prod_id"/>
</field>

<field name="categories" type="myapp.Category" collection="vector">
<sql name="category_id"

many-table="category_prod" many-key="prod_id" />
</field>

</class>

3.8.1.4.2. 1:M relation

The following code fragment shows (again) the mapping file for the Product class. The field definition

Castor JDO

Castor (1.3.3) 157

highlighted shows how to declare a 1:M relation between Product and ProductDetail, where every product
instance is made up of many ProductDetails:

<class name="myapp.Product" identity="id">

<map-to table="prod" />

<field name="id" type="integer">
<sql name="id" type="integer" />

</field>

<field name="name" type="string">
<sql name="name" type="char" />

</field>

<field name="price" type="float">
<sql name="price" type="numeric" />

</field>

<field name="group" type="myapp.ProductGroup" >
<sql name="group_id" />

</field>

<field name="details" type="myapp.ProductDetail" collection="vector">
<sql many-key="prod_id"/>

</field>

<field name="categories" type="myapp.Category" collection="vector">
<sql name="category_id"

many-table="category_prod" many-key="prod_id" />
</field>

</class>

The following code fragment shows the corresponding mapping entry for the ProductDetail class that defines
the second leg of the 1:M relation between Product and ProductDetail.

<class name="myapp.ProductDetail" identity="id" depends="myapp.Product" >

<description>Product detail</description>

<map-to table="prod_detail" xml="detail" />

<field name="id" type="integer">
<sql name="id" type="integer"/>

</field>

<field name="name" type="string">
<sql name="name" type="char"/>

</field>

<field name="product" type="myapp.Product">
<sql name="prod_id" />

</field>

</class>

3.8.1.4.3. M:N relation

The following code fragment shows (again) the mapping file for the Product class. The field definition
highlighted shows how to declare a M:N relation between Product and ProductCategory, where many
products can be mapped to many product categories:

<class name="myapp.Product" identity="id">

<map-to table="prod" />

<field name="id" type="integer">
<sql name="id" type="integer" />

Castor JDO

Castor (1.3.3) 158

</field>

<field name="name" type="string">
<sql name="name" type="char" />

</field>

<field name="price" type="float">
<sql name="price" type="numeric" />

</field>

<field name="group" type="myapp.ProductGroup" >
<sql name="group_id" />

</field>

<field name="details" type="myapp.ProductDetail" collection="vector">
<sql many-key="prod_id">/>

</field>

<field name="categories" type="myapp.Category" collection="vector">
<sql name="category_id"

many-table="category_prod" many-key="prod_id" />
</field>

</class>

The following code fragment shows the corresponding mapping entry for the ProductCategory class that
defines the second leg of the M:N relation between Product and Category.

<class name="myapp.Category" identity="id">

<description>
A product category, any number of products can belong to
the same category, a product can belong to any number of
categories.

</description>

<map-to table="category" xml="category" />

<field name="id" type="integer">
<sql name="id" type="integer"/>

</field>

<field name="name" type="string">
<sql name="name" type="char"/>

</field>

<field name="products" type="myapp.Product" collection="vector">
<sql name="prod_id"

many-table="category_prod" many-key="category_id" />
</field>

</class>

3.8.1.5. Extend relation & polymorphism

As of release 0.9.9, Castor supports polymorphic queries on extend hierarchies. (That is, hierarchies where
some entities "extend" other entities.) To highlight this new feature, let's add two new classes to what we have
currently.

package myapp;

public class Computer extends Product {

private int _id;

private String _make;

public int getId() { ... }

public void setId(int anId) { ... }

Castor JDO

Castor (1.3.3) 159

public String getmake() { ... }

public void setMake(String aMake) { ... }

}

public class Car extends Product {

private int _id;

private Date _registeredIn;

public int getId() { ... }

public void setId(int anId) { ... }

public Date getRegisteredIn() { ... }

public void setRegisteredIn(Date aRegisteredIn) { ... }
}

The corresponding DDL statements for the relational database tables COMP and CAR would look as follows:

COMP:

create table comp (
id int not null,
make varchar(200) not null

);

CAR:

create table car (
id int not null,
regIn int not null

);

Based upon the mapping defined for the Product class as shown above, the following code fragment shows the
mapping for the Computer and Car classes.

<class name="myapp.Computer" extends="myapp.Product" identity="id">

<map-to table="COMP" />

<field name="id" type="integer">
<sql name="id" type="integer" />

</field>

<field name="make" type="string">
<sql name="make" type="char" />

</field>

</class>

<class name="myapp.Car" extends="myapp.Product" identity="id">

<map-to table="CAR" />

<field name="id" type="integer">
<sql name="id" type="integer" />

</field>

<field name="registeredIn" type="date">
<sql name="regIn" type="long" />

</field>

</class>

Castor JDO

Castor (1.3.3) 160

Based upon this mapping, it is possible to execute the following OQL queries against this class model:

OQLQuery query = d.getOQLQuery("SELECT c FROM myapp.Computer c");

To return all computers:

OQLQuery query = d.getOQLQuery("SELECT c FROM myapp.Computer c WHERE c.make = $");

To return all computers of a particular make:

OQLQuery query = d.getOQLQuery("SELECT p FROM myapp.Product p");

To return all products (where Castor will return the actual object instances, i.e. a Computer instance if the object
returned by the query is of type Computer or a Car instance if the object returned by the query is of type Car):

OQLQuery query = d.getOQLQuery("SELECT p FROM myapp.Product p WHERE p.group.name = $");

To return all products that belong to the specified product group (where Castor will return the actual object
instances, i.e. a Computer instance if the object returned by the query is of type Computer or a Car instance if
the object returned by the query is of type Car):

3.8.1.6. OQL samples

Based upon above definitions, here are a few OQL sample queries that highlight various artifacts of the OQL
support of Castor JDO.

To Be Written

3.9. Castor JDO - How To's

3.9.1. Introduction

This is a collection of HOW-TOs. The Castor project is actively seeking additional HOW-TO contributors to
expand this collection. For information on how to do that, please see 'How to author a HOW-TO'.

3.9.2. Documentation

3.9.2.1. How to author a HOW-TO document

3.9.2.2. How to author an FAQ entry

3.9.2.3. How to author a code snippet

Castor JDO

Castor (1.3.3) 161

3.9.2.4. How to author core documentation

3.9.3. Contribution

3.9.3.1. How to setup Castor project in eclipse

3.9.3.1.1. Introduction

Are you just interested in how Castor source looks like, want to report a bug or enhancement request or like to
contribute to the project? The first step we suggest you to do is to setup a Castor project with eclipse IDE. As
we use eclipse to work at Castor, there is everything in place to work with eclipse. While you are free to use
other IDE's, you will need to configure things yourself with them.

3.9.3.1.2. Prerequisites

• Download and install JDK 1.5 or newer

• Download and install Eclipse 3.x

• Install the latest Subclipse eclipse plugin

• Optionally install the latest CheckStyle eclipse plugin

3.9.3.1.3. Create Project

• Create a New Project in eclipse from File -> New -> Projects

• Select "Checkout Projects from SVN" in "SVN" from "Select a wizard" window and click Next (this
option will only come if you have installed the subclipse plugin)

• Select "Create a new repository location" and click Next

• Enter the URL "https://svn.codehaus.org/castor/castor" and click Next

• Select the folder "trunk" from the list and click Next

• In "Check Out As" window the name of the project will be "castor" then click Next

• At last, you can choose the workspace and click Finish

• You can see castor project in your "Project Navigator" of eclipse

3.9.3.1.4. Troubleshooting

If you have trouble with Subclipse behind a proxy server: In Windows development environment, open the
file: C:\Documents and Settings\MyUserId\Application Data\Subversion\servers in text editor. Near the
bottom of that file is a [global] section with http-proxy-host and http-proxy-port (user and password also)
settings. Uncommented those lines, modified them for your proxy server and go back to the SVN Repository
view in Eclipse. This should solve the problem.

3.9.3.2. How to run Castor JDO's database independend unit tests

Castor JDO

Castor (1.3.3) 162

http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads/index.php
http://subclipse.tigris.org/download.html
http://eclipse-cs.sourceforge.net/

3.9.3.2.1. Overview

At the time of this writing Castor JDO has 3 kinds of test suites:

• Database independend plan unit tests.

• A JUnit based test suite that is used to test various functional areas against different database engines to give
developers/committers some reassurance when changing the codebase.

• A Junit based test suite to evaluate impact of changes on performance.

This document provides general information about running Castor JDO's database independend unit tests.

3.9.3.2.2. Prerequisites

See: How to setup Castor project in eclipse

3.9.3.2.3. Execute tests in eclipse

To execute tests in eclipse, go and right click on cpa/src/test/java source folder and select "Run As ->

JUnit Test".

3.9.3.2.4. References

• How to setup Castor project in eclipse

3.9.3.3. How to run Castor JDO's test suite

3.9.3.3.1. Overview

At the time of this writing Castor JDO has 3 kinds of test suites:

• Database independend plan unit tests.

• A JUnit based test suite (CTF) that is used to test various functional areas against different database engines
to give developers/committers some reassurance when changing the codebase.

• A Junit based test suite (PTF) to evaluate impact of changes on performance.

This document provides general information about running Castor JDO's test suite (CTF).

3.9.3.3.2. Intended Audience

Anyone who wants to run the CTF test suite. This document outlines the basic steps to get people unfamiliar
with this area started.

3.9.3.3.3. Prerequisites

Anybody wishing to run the CTF test suite should have access to the source code of Castor. This can be
obtained in one of the following ways:

• Download the sources distribution from the download page

Castor JDO

Castor (1.3.3) 163

http://www.castor.org/download.html

• Download the latest snapshot from SVN from Fisheye (see links on the bottom left corner)

• Check out the latest code from SVN into your prefered developement environment. For instructions on this
task, take a look at Subversion access. For eclipse How to setup Castor project in eclipse provides a detailed
description of this task.

3.9.3.3.4. 2 versions of CTF

At the moment we are in the middle of replacing the old CTF with a new one. While the old CTF still is our
reference for refactorings of Castor does the new CTF contain some tests which could not be added to the old
one due to its limitations. On the other hand are not all tests ported to the new CTF yet.

In the next sections we describe how to setup the environment to execute both CTF versions. While both
versions of CTF are designed to be executed against every supported database engine, we will describe things
with regard to mysql. Having said that there are only scripts for mysql at the new CTF at the moment. At a later
step of the CTF refactoring we will add scripts for other databases as well. In addition we intend to allow its
execution with an embedded derby database out of the box, but this have not been implemented yet.

For those who might be wondering about the numbering of tests, the numbers of the old tests are just random.
The numbers of the new tests are the jira issue numbers.

3.9.3.3.5. Steps to setup environment for old CTF

To execute tests against mysql database you probably need access to a mysql server. To create a database for
CTF, you have to execute the following commands on mysql consol.

create database test;
grant all on test.* at "localhost" to "test" identified by "test";
use test;
source [path-to-script];

If the server is not installed on your local machine (the one you execute the tests on) you have to replace
"localhost" with the IP of the machine the tests get executed on. The script to execute can be found in
"cpactf/src/old/ddl/" directory. For mysql it's "mysql.sql". If you like to use a different name for the
database or use other user credential you can adjust them at "cpactf/src/old/resources/jdo/mysql.xml".

As we do not include JDBC drivers for every database with Castor you also have to add the driver you like to
use to your classpath to execute the tests. The easiest way is to copy the driver to "lib/" directory as all jar's
contained therein are added automatically. Another option is to modify "bin/test.sh" or "bin/test.bat"
script depended on your operating system.

For mysql™ we still use "mysql-connector-java-3.1.13-bin", also for mysql server™ of version 5. This
version has proven to be stable. While other versions of mysql connector™ may also work, some of them have
bugs from our experience.

As already explained you will find JDO configurations for every supported database in
"cpactf/src/old/resources/jdo". The JDO configurations are named mysql.xml, oracle.xml etc. In the
same directory you will also find main mapping file "mapping.xml" that includes all other mappings which are
located in the "cpactf/src/old/resources/ctf/jdo/..." directories. There is one more important file for the
old tests "cpactf/src/old/resources/tests.xml", it is the main config file which defines which test should
be executed against which database engine. As mentioned previously not every test works with every database
engine as some missing some features or castor does not support everything of every engine.

3.9.3.3.6. Steps to run old CTF from commandline

Castor JDO

Castor (1.3.3) 164

http://svn.castor.codehaus.org/viewrep/castor/castor/trunk
http://www.castor.org/scm.html#Subversion-access

From a command line (e.g a shell), please execute the following commands to run the whole test suite against
mysql (where <castor-root> points to the directory where you installed the Castor sources:

cd <castor-root>/bin
build clean
build tests
test castor.mysql

To execute just one of the many tests of the complete test suite, please change this to:

cd <castor-root>/bin
build clean
build tests
test castor.mysql.TC30

Note

You have to execute "build clean" and "build tests" again if you have changed anything within
eclipse (e.g. a configuration file or a class).

3.9.3.3.7. Steps to run old CTF out of eclipse

Now, let's see how we can run these old CPACTF tests through eclipse.

• Go to "/cpacft/src/old/java" and right click

• Select Run As -> Run...

• Select "Java Application" from the left side menu and double click on it to create "New_configuration".

• Select Project -> castor

• Enter Main class -> MainApp

• Select Arguments Tab

• Enter Program Arguments for example: "castor.mysql.TC31" or "castor.mysql"

• Now "Run"

3.9.3.3.8. Short description of the old CTF tests

As some features are not supported by all database engines (e.g. sequence keygenerator) or a test have not been
verified against a database, only a subset of the following tests will be executed if you run CTF.

• TC01 Duplicate key detection tests.

• TC02 Concurrent access tests.

• TC03 Read only tests.

• TC04 Deadlock detection tests.

Castor JDO

Castor (1.3.3) 165

• TC05 Update rollback tests.

• TC06 Race tests.

• TC07 Cache leakage tests.

• TC08 Cache expiry measure.

• TC09 TxSynchronizable interceptor tests.

• TC10 Type handling tests.

• TC11 Type handling of LOB tests.

• TC12 Type Conversion tests.

• TC13 Serializable object tests.

• TC14 Rollback primitive tests.

• TC15 Multiple columns primary keys tests.

• TC15a Multiple columns primary keys only tests.

• TC16 Nested fields tests.

• TC17 Timestamp tests.

• TC18 Persistence interface tests.

• TC19 InstanceFactory interface tests.

• TC20 Key generators: MAX, HIGH-LOW.

• TC23 Key generator: IDENTITY.

• TC24 Key generator: UUID.

• TC25 Dependent objects tests.

• TC26 Dependent objects tests.

• TC27 Dependent update objects tests.

• TC28 Dependent update objects tests.

• TC30 OQL-supported syntax.

• TC31 OQL queries for extends.

• TC32 Test limit clause.

• TC33 Test limit clause with offset.

• TC34 Test limit clause with offset at extended object.

• TC36 SizeOracle.

Castor JDO

Castor (1.3.3) 166

• TC37 Absolute.

• TC38 CALL SQL with parameters.

• TC38a Named query support.

• TC70 Collections.

• TC71 Test special collections.

• TC72 Test sorted collections.

• TC73 ManyToMany.

• TC74 ManyToManyKeyGen.

• TC75 Expire Many-To-Many.

• TC76 Cached OID with db-locked.

• TC77 Query garbage collected.

• TC78 JDBC connection.

• TC79 Test the use of Database.isLocked().

• TC79a Test auto-store attribute.

• TC79aa Test auto-store attribute for 1:M relations.

• TC79b Test the use of Database.isPersistent().

• TC80 self-referential relation test with extend hierarchies.

• TC81 Dependent relation test.

• TC82 Dependent relation test (using no key generators).

• TC83 Identity definition through identity attribute in field mapping.

• TC84 Transient attribute.

• TC85 TestEnum.

• TC87 TestLazy1to1.

• TC88 Lazy Loading.

• TC89 Expire Lazy Employee.

• TC93 Polymorphism Degenerated tests.

• TC94 Polymorphism tests.

• TC95 Polymorphism tests with key generator.

• TC96 Polymorphism tests for depend relations.

Castor JDO

Castor (1.3.3) 167

• TC97 Polymorphism tests.

• TC98 Polymorphism tests in a threaded environment.

• TC99 Polymorphism tests (many 2 many).

• TC200 Self-referential relation tests.

• TC201 Self-referential relation tests with extend hierarchy.

• TC202 ForeignKeyFirst tests.

• TC203 Timezone tests.

3.9.3.3.9. Steps to setup environment for new CTF

To execute tests against mysql database you probably need access to a mysql server. To create a database for
CTF, you have to execute the following commands on mysql console.

create database cpactf;
grant all on cpactf.* at "localhost" to "test" identified by "test";
use cpactf;
source <path-to-script>;

If the server is not installed on your local maschine (the one you execute the tests on) you have to replace
"localhost" with the IP of the maschine the tests get executed on. For mysql execute every "mysql.sql" script
found in subdirectories of "cpactf/src/test/ddl/" directory. If you like to use a different name for the
database or use other user credential you can adjust them at "cpactf/src/test/resources/cpactf-conf.xml".

As we do not include JDBC drivers for every database with Castor you also have to add the driver you like to
use to your classpath to execute the tests. The easiest way is to copy the driver to "lib/" directory as all jar's
contained therein are added automatically. Another option is to modify "bin/test.sh" or "bin/test.bat"
script depended on your operating system.

For mysql we still use "mysql-connector-java-3.1.13-bin", also for mysql server™ of version 5. This
version has proven to be stable. While other versions of mysql connector™ may also work, some of them have
bugs from our experience.

3.9.3.3.10. Steps to run new CTF out of eclipse

Execution of the new test suite from within eclipse against mysql™ is very simple.

• Select "cpactf/src/test/java" and right click

• Select "Run as" -> "JUnit tests"

In in the configuration file "cpactf-conf.xml" mysql is configuerd as default database. To execute tests against
another database engine or to force execution of tests that have been excluded you can pass VM parameter to
the test framework. VM Arguments can also be specified in eclipse.

• Select "Run as" -> "Run.." from main menu

• Select Arguments Tab

Castor JDO

Castor (1.3.3) 168

• Enter VM Arguments for example: "-Dname=value"

• Now "Run"

The following VM parameters are supported by CTF.

config
Path to an alternate configuration file.

database
Name of the database configuration.

transaction
Name of the transaction manager configuration.

force
Force execution of excluded tests (true/false).

3.9.3.3.11. Troubleshooting

For those who face the following problem in eclipse while executing the tests

#An unexpected error has been detected by HotSpot Virtual Machine:
#
#EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x7c918fea, pid=2460, tid=3712
#
#Java VM: Java HotSpot(TM) Client VM (1.5.0-b64 mixed mode)
#Problematic frame:
#C [ntdll.dll+0x18fea]
#
#An error report file with more information is saved as hs_err_pid2460.log
#
If you would like to submit a bug report, please visit:
http://java.sun.com/webapps/bugreport/crash.jsp
#

It is a problem with memory configured for eclipse. It can be changed in eclipse.ini file which can be found
in installation directory of Eclipse. By default it is -Xmx256m, just increase it and problem go away.

3.9.3.3.12. References

• How to setup Castor project in eclipse

• Subversion access

• The testing framework

3.9.3.4. How to run Castor JDO's performance tests

3.9.3.4.1. Overview

At the time of this writing Castor JDO has 3 kinds of test suites:

• Database independend plan unit tests.

• A JUnit based test suite that is used to test various functional areas against different database engines to give

Castor JDO

Castor (1.3.3) 169

http://www.castor.org/scm.html#Subversion-access
http://www.castor.org/test-framework.html

developers/committers some reassurance when changing the codebase.

• A Junit based test suite to evaluate impact of changes on performance.

This document provides general information about running Castor JDO's performance tests.

3.9.3.4.2. Prerequisites

See: How to setup Castor project in eclipse

3.9.3.4.3. Steps to setup environment for old CTF

To execute performance tests against mysql database you probably need access to a mysql server. To create a
database for PTF, you have to execute the following commands on mysql console.

create database cpaptf;
grant all on cpaptf.* at "localhost" to "test" identified by "test";
use cpaptf;
source [path-to-script];

If the server is not installed on your local machine (the one you execute the tests on) you have to replace
"localhost" with the IP of the machine the tests get executed on. The script to execute is
"cpaptf/src/test/ddl/mysql.sql".

As we do not include JDBC drivers for every database with Castor you also have to add the driver you like to
use to your classpath to execute the tests. The easiest way is to copy the driver to "lib/" directory as all jar's
contained therein are added automatically.

For mysql we still use "mysql-connector-java-3.1.13-bin", also for mysql server™ of version 5. This
version has proven to be stable. While other versions of mysql connector™ may also work, some of them have
bugs from our experience.

3.9.3.4.4. Steps to execute performance tests in eclipse

Execution of the performance test suite from within eclipse is very simple.

• Select "cpaptf/src/test/java" -> "org.castor.cpaptf" -> "TestAll.java" and right click

• Select "Run As" -> "JUnit Test"

By default the test uses 2000 service objects that get created, loaded with various configurations and deleted
afterwards. Obviously this will take quite some time. Please be patient for normal termination of the tests as
you will need to clean test tables by hand otherwise. To execute tests with a different number of objects you
can adjust "FACTOR" constant in "TestCreate.java". For example, if you set "Factor" to 1.0 the tests will be
executed with 10000 service objects. When using more test objects be aware that you may need to increase
heap size of the virtual machine for the test to finish.

By default you won't see any output of results on the console as logging level of log4j is set to "warn" by
default. But if you change log level of "org.castor.cpaptf" package to "info" you will see detailed execution
times for every test on the console. Be aware that there are quite some log4j.xml configurations in the whole
Castor project at the moment of which the one first one on classpath will be used.

If you like to review some older test results you will find them under
"cpaptf/src/site/resources/results/" but they depend heavy on the machine you are running the tests on.

Castor JDO

Castor (1.3.3) 170

3.9.3.4.5. References

• How to setup Castor project in eclipse

3.9.3.5. Submitting a bug report

3.9.3.5.1. Submitting a problem report

3.9.3.5.1.1. Driver

Most of the traffic on the Castor Users mailing list is about people asking for help on various features of Castor
(whether JDO or XML). Whilst there is nothing wrong about asking questions and looking for help if you are
stuck, it seems that there is room to improve the structure of this 'conversation'.

If you have a look at some of these threads (e.g. at the searchable mailing list archive), it's quite easy to see that
most of the time ...

1. An initial question is posted.

2. An initial reply is posted with some follow-up questions, e.g. request for code fragments, mapping files, etc.

3. One or more code fragments, mapping files, etc. are being posted.

4. etc.

This document will establish guidelines with regards to step 3) above.

3.9.3.5.1.2. Introduction

This document provides step-by-step instructions on how to submit a problem report (when being asked to do
so). It does so by walking you through a fictive problem and its resulting bug report, and providing instructions
based upon this scenario.

Per definition, any problem report submitted (in other words, most likely attached to a bug report at
http://jira.codehaus.org/browse/CASTOR) by the means of a patch has to include the following artefacts:

• A JUnit test case that 'showcases' your problem.

• Castor JDO configuration file.

• Castor JDO mapping file.

• One or more 'entity' classes required to run your test case.

• A SQL schema file (to help in the creation of required tables).

• A README file (with any additional information/instructions required to understand /run your test case.

Note

Whilst we can and will not impose these guidelines in their strictest sense, I think that the use of
technologies such as JUnit will simplify problem resolution and as a result lead to shorter
turn-around times. Which is ultimately where you, the user, gains..

Castor JDO

Castor (1.3.3) 171

http://www.mail-archive.com/castor-dev%40exolab.org
http://jira.codehaus.org/browse/CASTOR

3.9.3.5.1.3. Templates

To facilitate creation of a fully featured patch as discussed above, we have provided you with an already
existing bug template at 'src/bugs/jdo/template'.

Note

Please note that this directory is distributed only as part of the source archive(s).

This directory holds all artefacts mentioned above, as is structured as follows:

Table 3.7. bug template artefacts

src Source code

src/bugs Common root for bug reports

src/bugs/jdo Common root for JDO bug reports

src/bugs/jdo/template Patch template

src/bugs/jdo/template/TestTemplate.java JUnit test case.

src/bugs/jdo/template/EntityOne.java Entity required by the test case

src/bugs/jdo/template/jdo-conf.xml Castor JDO configuration

src/bugs/jdo/template/mapping.xml Castor mapping file

src/bugs/jdo/template/create.sql SQL schema to create database table(s)

src/bugs/jdo/template/README Test instructions

To create you own bug report, please copy 'template' to e.g. bug1820, assuming that 1820 is the number
assigned to your BugZilla problem report). Subsequently, please amend the files provided to match your own
requirements. After you have consolidated your changes, the original directory structure in src/bugs could
look as follows:

Table 3.8. directory structure of src/bugs

src Source code

src/bugs Common root for bug reports

src/bugs/jdo Common root for JDO bug reports

src/bugs/jdo/template Patch template

src/bugs/jdo/template/TestTemplate.java JUnit test case.

src/bugs/jdo/template/EntityOne.java Entity required by the test case

src/bugs/jdo/template/jdo-conf.xml Castor JDO configuration

src/bugs/jdo/template/mapping.xml Castor mapping file

src/bugs/jdo/template/create.sql SQL schema to create database table(s)

Castor JDO

Castor (1.3.3) 172

src/bugs/jdo/template/README Test instructions

src/bugs/jdo/bug1820 Your specific bug (as per BugZilla bug number)

src/bugs/jdo/bug1820/TestCase.java JUnit test case.

src/bugs/jdo/bug1820/Entity1.java Entity required

src/bugs/jdo/bug1820/Entity2.java Entity required

src/bugs/jdo/bug1820/jdo-conf.xml Castor JDO configuration

src/bugs/jdo/bug1820/mapping.xml Castor mapping file

src/bugs/jdo/bug1820/schema.sql SQL schema to create database table(s)

src/bugs/jdo/bug1820/README Test instructions

3.9.3.5.1.4. Add your test case to the master test suite

Once you have successfully executed your JUnit test case, please add this test to the master test suite available
in src/bugs/AllTests.java as follows. To add a test to this suite, please duplicate the line

suite.addTestSuite(template.TestTemplate.class);

and replace the term 'jdo.template.TestTemplate.class' with 'jdo.bug1820.TestCase'.

This will allow us to run all tests related to all open bugs in one go by executing just this test suite.

3.9.3.5.1.5. Creating the patch

As explained in Guidelines For Code Contribution, we ask you to submit your code changes in the form of a
unified patch by attaching it to the relevant bug report.

To create a unified patch for submission, you can either use the command line SVN client (which you find
instructions to download for at http://subversion.tigris.org/ or any IDE that offers support or SVN (such as
Eclipse with Subclipse plugin)

In any case, please note that we are trying to standardize on the use of unified patches only, and that you
should always update your code (against the SVN repository) before creating the patch. If you have never used
SVN before, there will be ways to convince us to accept e.g. a Zip file includig your changes.

3.9.3.5.1.6. References

Whilst we cannot assume that every Castor (JDO) user is an expert in the use of JUnit, we do believe that they
are quite easy to get acquainted with. As a starting point, please find below some references:

• JUnit - A well-known framework for writing integration-level and functional tests.

• SVN Home - many usefulSVN related items

3.9.3.6. How to prepare a patch

3.9.3.6.1. Overview

Castor JDO

Castor (1.3.3) 173

http://www.castor.org/contributing.html#Guidelines-For-Code-Contribution
http://subversion.tigris.org/
http://www.junit.org/
http://subversion.tigris.org/

A "patch" is the set of differences between two versions of the same file. Patches are used to send someone the
exact changes that you have made to your version of a program or a document. They can then apply that patch
to their version to merge the changes and bring their version up-to-date with your version.

As our example we use the contribution of a simple documentation patch for the Castor project. The principles
apply to any project and to any type of file, e.g. *.xml, *.java, *.xsd, etc.

3.9.3.6.2. Intended Audience

Anyone who wants to contribute to a project. This document addresses the basics, so as to get new people
started.

Our example describes the use of command-line tools for a UNIX system. Other tools can be used, as long as
they produce a "unified diff".

3.9.3.6.3. Prerequisites

Contributers should have:

• The source code of the documents as a local working copy of the SVN repository. If you are working with
the current SVN HEAD then you will have already done a 'svn checkout castor'. However, see below for
other ways of obtaining source for diff comparison.

• The tools with which to prepare a patch. On UNIX the "svn" program has the svn diff command.

3.9.3.6.4. Steps

Here is how to proceed.

3.9.3.6.4.1. Understand what a patch is

A "Patch" is the set of differences between two versions of the same file. A patch comprises one or more "diff"
files. These diffs are produced by the program of the same name: diff.

Here is an example of a single diff for one of the Castor How-to pages, where we are suggesting a minor text
change. Do not get frightened. These are just human-readable instructions to the "patch" program.

Index: contrib.xml
===
RCS file: /home/projects/castor/src/doc/jdo-howto.xml,v
retrieving revision 1.7
diff -u -r1.7 contrib.xml
--- jdo-howto.xml 30 Apr 2002 07:44:52 -0000 1.7
+++ jdo-howto.xml 26 May 2002 04:08:23 -0000
@@ -208,7 +208,7 @@

to create a patch. (The commands are for Linux.)
</p>

- <s2 title="How to Establish your Local Repository">
+ <s2 title="How to Establish your Local Working Copy">

<p>
This will checkout the current copy of the master cvs repository and

That is a "unified diff" ... there a some lines of context on each side of the changes. This patch is basically
saying "Change the text on line 208".

Castor JDO

Castor (1.3.3) 174

• lines to be deleted are preceded with -

• lines to be added are preceded with +

• contextual lines with no leader remain the same

3.9.3.6.4.2. Modify your document and ensure consistency

Let us now go though the process of preparing that patch. Go ahead and edit your local copy of the document at
$CASTOR_HOME/src/doc/jdo-howto.xml.

Ensure that it is valid XML using your favourite XML editor or an external validating parser. Please do not
leave it up to the poor committer to fix broken XML.

Run the 'build doc' target to be sure that links are not broken and that the new document is presented as you
intend it to be.

3.9.3.6.4.3. Get ready

If you are using the HEAD of SVN then ensure that your working copy is up-to-date. Of course, if you are
using a previous public release version of Castor, then it is already up-to-date.

3.9.3.6.4.4. Generate the differences

Prepare the diff file. SVN will contact the remote repository, ensure that your working copy is up-to-date, then
compare your local copy with the master repository.

cd src/doc
svn diff jdo-howto.xml > $TEMP/castor/patch/jdo-howto.xml.diff

3.9.3.6.4.5. Describe the patch

Prepare a brief explanation of what your patch does. Get this ready in a text file before you go to Jira. See
further hints about this in the "Description" section of the How-to Jira.

What revision of SVN did you patch against? Was it HEAD branch? Was it a nightly build? Was it a public
release?

3.9.3.6.4.6. Submit via Jira

To contribute your patch to a specific project, use Jira - The Codehaus Issue Database. The procedure is
explained in How to Contribute a Patch via Jira.

3.9.3.6.5. Real World Extension

3.9.3.6.5.1. Multiple diffs in a single patch

A patchfile can contain the differences to various individual documents. For example, the following command
does that ...

cd src
svn diff > $WORK/castor/patch/src.dir.diff

Castor JDO

Castor (1.3.3) 175

However, be careful not to go overboard with this technique. When producing multiple diffs in one patchfile,
try to limit it to one particular topic, i.e when fixing the same broken external link in various pages, then it
would be fine to produce a single diff. Consider the committer - they will find it hard to apply your patch if it
also attempts to fix other things.

3.9.3.6.5.2. Other ways of obtaining source for diff comparison

Ideally you will prepare your patches against a SVN repository. There are other ways to do this. They do create
more work for the committers, however it may be the only way that you can do it. We would certainly rather
receive your patch however it comes. As a matter of fact, we would politely ask you first to send us a unified
patch.

You could get the source document via the web interface to SVN. Here are the steps ...

• get the relevant XML file via FishEye

• save the file to your local disk: ./jdo-howto.xml.orig

• create a copy of the file: ./jdo-howto.xml

• make your modifications and validate the XML

• use the "diff" command (i.e. not 'cvs diff') as follows

• diff -u jdo-howto.xml.orig jdo-howto.xml > $WORK/castor/patch/jdo-howto.xml.diff

• proceed as for Step 5.

3.9.3.6.6. Tips

• Please review your diffs before you submit your patch to JIRA

3.9.3.6.7. References

• The UNIX manual pages 'man diff' and 'man patch'.

• SVN Home - many useful SVN related items

3.9.3.7. How to Contribute a Patch via Jira

3.9.4. OQL

3.9.4.1. How to use a LIMIT clause with OQL

3.9.4.1.1. Overview

3.9.4.1.2. Intended Audience

Anyone who wants to execute an OQL statement and limit the result size.

The example given describes the addition of LIMIT/OFFEST clauses to an existing OQL statement.

Castor JDO

Castor (1.3.3) 176

http://subversion.tigris.org/

3.9.4.1.3. Prerequisites

You should have a valid class mapping for two Java classes Product and ProductGroup, similar to the
following one:

package myapp;

public class Product
{

private int _id;

private String _name;

private float _price;

private ProductGroup _group;

public int getId() { ... }
public void setId(int anId) { ... }

public String getName() { ... }
public void setName(String aName) { ... }

public float getPrice() { ... }
public void setPrice(float aPrice) { ... }

public ProductGroup getProductGroup() { ... }
public void setProductGroup(ProductGroup aProductGroup) { ... }

}

The following fragment shows the Java class declaration for the ProductGroup class:

public class ProductGroup
{

private int _id;

private String _name;

public int getId() { ... }
public void setId(int id) { ... }

public String getName() { ... }
public void setName(String name) { ... }

}

3.9.4.1.4. Steps

Here is how to proceed.

3.9.4.1.4.1. Compose an OQL statement to obtain all ProductGroup instances

The following code fragment shows an OQL query to select the all ProductGroup instances.

OQLQuery query = db.getOQLQuery("select product from ProductGroup product");
query.bind(10);
OQLResults results = query.execute();

Castor JDO

Castor (1.3.3) 177

3.9.4.1.4.2. Add LIMIT clause to OQL statement

The following code fragment shows the same OQL query as above, to this time the LIMIT keyword is added to
select the first 10 instances only.

OQLQuery query = db.getOQLQuery(
"select product from ProductGroup product LIMIT $1");

query.bind(10);
OQLResults results = query.execute();

3.9.4.1.4.3. Add OFFSET clause to OQL statement

Below is the same OQL query again, restricting the number of ProductGroup instances returned to 10, though
this time it is specified that the ProductGroup instances 101 to 110 should be returned.

OQLQuery query = db.getOQLQuery(
"select product from ProductGroup as product LIMIT $1 OFFSET $2");

query.bind(10);
query.bind(100);
OQLResults results = query.execute();

3.9.4.1.5. Limitations

The following RDBMS fully/partially support LIMIT/OFFSET clauses.

Table 3.9. Support for LIMIT in RDBMS

RDBMS LIMIT OFFSET

postgreSQL Yes Yes

mySQL Yes Yes

Oracle 1) 2) Yes Yes

HSQL Yes Yes

MS SQL Yes -

DB2 Yes -

1) Caster has full support for LIMIT/OFFSET clauses for Oracle Releases 8.1.6 and later.

2) For the LIMIT/OFFSET clauses to work properly the OQL query is required to include an ORDER BY
clause.

3.9.4.1.6. Tips

• In the case a RDBMS does not support LIMIT/OFFSET clauses, a SyntaxNotSupportedException will be
thrown.

Castor JDO

Castor (1.3.3) 178

3.9.4.1.7. References

• Castor JDO's OQL

3.9.5. Core features

3.9.5.1. How to use a (performance) cache with Castor

3.9.5.1.1. Intended Audience

Anyone who wants to enable caching for classes already mapped with Castor JDO.

This document addresses the basics to get people familiar with the basic concepts and discusses some
implementation details.

The example given describes the addition of a <cache-type> element to an existing class mapping.

3.9.5.1.2. Prerequisites

You should have a valid class mapping for a Java class, similar to the following one:

<mapping>
<class name="com.xyz.MyOtherObject" identity="id">

<field name="id" type="integer">
...

</field>
<field name="description" type="string">

...
</field>

</class>
</mapping>

3.9.5.1.3. Steps

Here is how to proceed.

3.9.5.1.3.1. Add <cache-type> element to class mapping

Add a <cache-type> element as shown below, specifying the cache provider to use in the 'type' attribute.

<mapping>
<class name="com.xyz.MyOtherObject" identity="id">

<cache-type type="time-limited"/>
<field name="id" type="integer">

...
</field>
<field name="description" type="string">

...
</field>

</class>
</mapping>

This, for example, defines the 'time-limited' cache provider to be used for the com.xyz.MyOtherObject. This
cache provider applies internally a time-limited least-recently-used algorithm for com.xyz.MyObject instances.

Castor JDO

Castor (1.3.3) 179

3.9.5.1.4. Tips

• With the current release, performance caches also serve a dual purpose as dirty checking caches for
long-transactions. This limitation implies that the object's duration in the performance cache determines the
allowed time span of a long transaction. This might become an issue when performance caches of type
'count-limited' or 'time-limited' are being used, as objects will eventually be disposed. If an application
tries to update an object that has been disposed from the dirty checking cache, an ObjectModifedException
will be thrown.

3.9.5.1.5. References

• Long transactions

• Caching

• Caching and clustered environments

3.9.5.2. How to map typesafe enumerations with Castor

3.9.5.2.1. Intended Audience

Anyone who wants to persist object that refer to a typesafe enumeration.

This document addresses the basics and shows an example how to map an object that has a typesafe
enumeration property.

3.9.5.2.2. Prerequisites

Enumerations are a common method for ensuring data integrity, both in software and in relational databases. As
a platform for linking the two, we added support for persisting class fields whose type is a Java typesafe
enumeration to Castor JDO.

To use this new feature your typesafe enumeration should follow the enum pattern commonly used and provide
a static valueOf(String) method. An enum of different kinds of computer equipment may look like:

public class KindEnum {
private static final Map KINDS = new HashMap();

public static final KindEnum MOUSE = new KindEnum("Mouse");
public static final KindEnum KEYBOARD = new KindEnum("Keyboard");
public static final KindEnum COMPUTER = new KindEnum("Computer");
public static final KindEnum PRINTER = new KindEnum("Printer");
public static final KindEnum MONITOR = new KindEnum("Monitor");

private final String _kind;

private KindEnum(final String kind) {
_kind = kind;
KINDS.put(kind, this);

}

public static KindEnum valueOf(final String kind) {
return (KindEnum) KINDS.get(kind);

}

public String toString() { return _kind; }
}

Castor JDO

Castor (1.3.3) 180

At your Product class you may want to have a property that tells you what kind of computer equipment a
product is of.

public class Product {
private int _id;
private String _name;
private KindEnum _kind;

public Product() { }

public int getId() { return _id; }
public void setId(int id) { _id = id; }

public String getName() { return _name; }
public void setName(String name) { _name = name; }

public KindEnum getKind() { return _kind; }
public void setKind(KindEnum kind) { _kind = kind; }

}

3.9.5.2.3. Steps

Your mapping for the Product class should be:

<class name="Product" identity="id">
<description>Product with kind enum</description>
<map-to table="enum_prod"/>
<field name="id" type="integer">
<sql name="id" type="integer"/>

</field>
<field name="name" type="string">
<sql name="name" type="char"/>

</field>
<field name="kind" type="KindEnum">
<sql name="kind" type="char"/>

</field>
</class>

3.9.5.2.4. Tips

• To add this new feature we added an additional check when searching for field types. Like before Castor first
searches for know types and thereafter for a mapping for the class you specified as type. If both of them do
not match it now checks if the class specified as type is available at classpath and has a static
valueOf(String) method. Only if all of this conditions are met it will be viewed as a valid mapping.

3.9.5.3. How to use Castor JDO's connection proxies

3.9.5.3.1. Introduction

Castor JDO uses the Jakarta Common's Logging package for output information relevant to the execution of a
specific JDO operations to a log file. The information output historically included the SQL statements used by
Castor to execute the various persistence operations such as loading or updating domain entities. Unfortunately,
the SQL statements logged did not include any information about the parameters being bound to the prepared
statements immediately before execution, and hence made it very hard for users of Castor JDO to analyze these
in the case of an issue/problem.

Castor JDO

Castor (1.3.3) 181

To improve this situation, proxy classes for the java.sql.Connection and java.sql.PreparedStatement interfaces
have been added, to allow for complete and better JDBC statements to be output to the log files. As this might
impose a performance penalty at run-time, we have allowed for this to be turned off completely through the
standard Castor property file.

A new property has been added to the Castor property file (castor.properties) to allow configuration of this
feature.

3.9.5.3.2. Intended Audience

Anyone who wants to use the new JDBC proxy classes with Castor JDO selectively, i.e. enabling and disabling
their use.

The example given describes how to turn the use of the proxy classes on/off.

3.9.5.3.3. Prerequisites

You should have a valid castor.properties file as part of your application.

3.9.5.3.4. Steps

Here is how to proceed.

3.9.5.3.4.1. Enable the use of the JDBC proxy classes

To enable the use of the JDBC proxy classes described above, please add the following section to your
castor.properties file.

True if JDBC proxy classes should be used to enable more detailed logging output of SQL
statements; false otherwise (logging of SQL statements will be turned off completely).
#
org.exolab.castor.persist.useProxy=true

This instructs Castor JDO to use the JDBC proxy classes and to output full information about the SQL
statements used at run-time. When disabled, no logging of SQL statements will occur at all.

3.9.5.3.5. References

• Configuration of Castor

• Jakarta Common Logging

3.9.6. Cascading

3.9.6.1. How to use cascading operations

3.9.6.1.1. Overview

Up to Castor 1.3.1, users of Castor JDO have been able to automatically store/update or delete objects across
relations by issuing ...

Castor JDO

Castor (1.3.3) 182

http://www.castor.org/conf-lib.html
http://jakarta.apache.org/commons/logging/

Database.setAutostore(true)

before going starting a transaction. This feature was useful, indeed, but on a second look its limitation (global
definition across all entities) became obvious, especially on big projects. You might want to have cascading
operations activated selectively (activated for one object, but not for another). Or even more tricky, you might
like to automatically track changes across one relation from a starting object, but but not across another relation
from the very same object.

As of Castor 1.3.2, a new cascading attribute has been introduced to the <sql> tag of the JDO mapping file.

3.9.6.1.2. Intended Audience

This and all other cascading documents address people familiar with the basic concepts of mapping domain
entities to database tables and defining relations between objects (on database level as well as on object level).
But in particular, this document applies to the following user groups:

1. Everyone who wants to cascade operations across (any type of) object relation(s).

2. Everyone who now uses Database.setAutoStore(boolean) to have persistence operations cascaded across
relations.

Note

Especially the second user group should change their approach towards using cascading operations,
and switch to using the new cascading attribute. As of Castor 1.3.2, the current
Database.setAutoStore(boolean) methods will be deprecated, and in the long run, this
operations will be removed from the JDO interfaces.

3.9.6.1.3. Prerequisites

You should have a valid mapping file, containing at least two objects, being in relation with each other. For the
remainder of this document, we'll be using the following example mapping file as a starting point.

<mapping>
<class name="org.castor.cascading.Author" identity="id">
<cache-type type="none" />
<map-to table="OneToOne_Author" />
<field name="id" type="integer">
<sql name="id" type="integer" />

</field>
<field name="timestamp" type="long">
<sql name="time_stamp" type="numeric" />

</field>
<field name="name" type="string">
<sql name="name" type="char" />

</field>
</class>
<class name="org.castor.cascading.Book" identity="id">
<cache-type type="none" />
<map-to table="OneToOne_Book" />
<field name="id" type="integer">
<sql name="id" type="integer" />

</field>
<field name="timestamp" type="long">
<sql name="time_stamp" type="numeric" />

</field>
<field name="name" type="string">

Castor JDO

Castor (1.3.3) 183

<sql name="name" type="char" />
</field>
<field name="author" type="org.castor.cascading.Author">
<sql name="author_id"/>

</field>
</class>

</mapping>

3.9.6.1.4. Use of the cascading attribute

In order to activate cascading for create operations for the author relation defined in the mapping file above,
you have to add the following attribute to the field mapping of the author property:

<class name="org.castor.cascading.one_to_one.Book" identity="id">
<cache-type type="none" />
...

<field name="author" type="org.castor.cascading.one_to_one.Author">
<sql name="author_id" cascading="create"/>

</field>
</class>

Remember that the code above adding a cascading attribute with a value of create is only an example. You can
define any combination of cascading attributes, delimiting those values by spaces, as shown in the following
example:

<field name="author" type="org.castor.cascading.one_to_one.Author">
<sql name="author_id" cascading="create update"/>

</field>

3.9.6.1.5. Values for the cascading attribute

In order to achieve an optimal granulation of activating and de-activating functionality, there are 5 possible
values, out of which 3 can be activated separately or in any combination.

In general, what you have to keep in mind is that some cascading types do not only affect the the
(coincidentally) identically named database operation, but also other persistence operations. For more details
please read the following references carefully.

• create: details on create operation

• delete: details on delete operation

• update: details on update operation

• none: cascading operations are disabled.

• all: Using the value all, you are providing a shortcut specifying that all three basic operations should be
defined at the same moment. This basically equals to a value of 'create delete update'.

If no cascading attribute is defined, its default value will be none.

3.9.6.1.6. References

Castor JDO

Castor (1.3.3) 184

• JDO Mapping

3.9.6.2. How to cascade creation

3.9.6.2.1. Overview

Cascading creation allows you to transfer some of the responsibilities of creating objects to Castor JDO. To be
more precise: if you enable cascading creation on a relation between two classes, all objects on one end of that
relation that have not yet been created will be created when the other end gets persisted. This saves you from
manually creating every single object, which is especially useful when dealing with large object graphs that
have 1:M (one to many) relations or many objects in a single relationship.

3.9.6.2.2. Enabling cascading creation

To enable cascading creation on a relation, you simply set the cascading attribute of the <sql> field describing
the relation to "create" (or "all"):

In other words, the field mapping for the Java property book ...

<field name="book" type="myapp.Book" >
<sql name="book_id" />

</field>

becomes

<field name="book" type="myapp.Book" >
<sql name="book_id" cascading="create" />

</field>

In case of bidirectional relations, it does matters on which end you enable cascading creation. It is also possible
to enable it on both ends.

3.9.6.2.3. Scenarios

3.9.6.2.3.1. db.create()

The most intuitive case is when you explicitly call db.create() on an object that has cascading creation
enabled on one or more of his relations. If the objects in those relationships have not yet been created, they will
be as part of the create() execution.

Here is a simple example, where the objects Author and Book are in a one-to-one relation (i.e. every Book has
exactly one Author):

db.begin();

Author author = new Author();
author.setId(1);
author.setName("John Jackson");

Book book = new Book();
book.setId(1);
book.setTitle("My Life");

Castor JDO

Castor (1.3.3) 185

book.setAuthor(author);

db.create(book);

db.commit();

Once the commit operation has successfully completed, both the Author and the Book instance will have been
persisted to your data store. To highlight this, lets's have a look at the corresponding database tables before and
after the execution of above code fragment.

Before

Table 3.10. Author

id name

(empty table)

Table 3.11. Book

id title author_id

(empty table)

After

Table 3.12. Author

id name

1 "John Jackson"

Table 3.13. Book

id title author_id

1 "My Life" 1

3.9.6.2.3.2. db.commit()

Cascading creation also works implicitly: any objects that are on the receiving end of a cascaded relation will
be created upon transaction commit, provided they do not exist yet and that the object on the primary end of
that relation does. In other words: if you modify a relation property of a loaded object, any new objects that
now need to be created will be created.

To demonstrate, let's continue the example from the previous section. We, again, have a Book and an Author,
in a one-to-one relation, both already persisted. If we now change the book's author to someone new, any object

Castor JDO

Castor (1.3.3) 186

that is not yet in the database will be persisted automatically. Just call db.commit() after setting the new author,
and the new author will be persisted as well.

db.begin();

Author author = new Author();
author.setId(2);
author.setName("Bruce Willis");

Book book = db.load(Book.class, 1);
book.setAuthor(author);

db.commit();

In terms of unit test assertions, the current state of the author and book instances can be expressed as follows:

db.begin();

Book book = db.load(Book.class, 1);
assertNotNull(book);
assertEquals(1, book.getId());

Author author = book.getAuthor();
assertNotNull(author);
assertEquals(2, book.getId());

db.commit();

As above, let's have a look at the corresponding database tables for the entities Author and Book:

Before

Table 3.14. Author

id name

1 "John Jackson"

Table 3.15. Book

id title author_id

1 "My Life" 1

After

Table 3.16. Author

id name

1 "John Jackson"

Castor JDO

Castor (1.3.3) 187

id name

2 "Bruce Willis"

Table 3.17. Book

id title author_id

1 "My Life" 2

Please note that we now have two authors stored, and that the book with an id value of '1' now has a foreign key
relationship to the author with the id value '2'.

3.9.6.2.3.3. Cascading create and collections

The real benefit of using cascading for object creation shows when dealing with 1:M relations, usually
expressed through Java collections in your entity classes.

For the remainder of this secction, we will use the Java classes Department and Employee, which have a 1:M
relationship (in other words, every department has one or more employees). On the Java side, this is expressed
as the Department having a collection of Employee objects in form of a Java collection. In the database, this
will obviously be the other way around, with the emp table referencing the dept table. Every example in this
section will use the same database state as a starting point, as shown here:

Table 3.18. dept

id name

23 "Accounting"

Table 3.19. emp

id name dept_id

1 "John" 23

2 "Paul" 23

3 "Ringo" 23

Example 1: Adding objects

db.begin();

Employee employee = new Employee();
employee.setId(4);
employee.setName("George");

Department department = db.load(Department.class, 23);
department.getEmployees().add(employee);

db.commit();

Castor JDO

Castor (1.3.3) 188

After

Table 3.20. dept

id name

23 "Accounting"

Table 3.21. emp

id name dept_id

1 "John" 23

2 "Paul" 23

3 "Ringo" 23

4 "George" 23

Example 2: Removing objects

db.begin();

Department department = db.load(Department.class, 23);
department.getEmployees().remove(2);

db.commit();

After

Table 3.22. dept

id name

23 "Accounting"

Table 3.23. emp

id name dept_id

1 "John" 23

2 "Paul" 23

3 "Ringo" NULL

Note

this of course only works if you allow the employee's foreign key dept_id to be NULL or,

Castor JDO

Castor (1.3.3) 189

alternatively, also delete the Employee when you remove the relationship (either by manually
calling db.remove() or TODO)

Example 3: Adding & removing objects

db.begin();

Employee e4 = new Employee();
e4.setId(4);
e4.setName("George");

Employee e5 = new Employee();
e5.setId(5);
e5.setName("Joe");

Employee e6 = new Employee();
e6.setId(6);
e6.setName("Jack");

Department dep = db.load(Department.class, 23);
dep.setEmployees(Arrays.asList(e4, e5, e6));

db.commit();

Database after:

Table 3.24. dept

id name

23 "Accounting"

Table 3.25. emp

id name dept_id

1 "John" NULL

2 "Paul" NULL

3 "Ringo" NULL

4 "George" 23

5 "Joe" 23

6 "Jack" 23

The note to example 2 also applies here.

3.9.6.2.4. See also

• How to use cascading operations - overview

3.9.6.3. How to cascade deletion

Castor JDO

Castor (1.3.3) 190

3.9.6.3.1. Overview

If you enable cascading deletion on a relationship, deleting the object on one end of the relationship (i.e. calling
db.remove() on the object) will also delete the object on the other end.

3.9.6.3.2. Enabling cascading deletion

To enable cascading deletion on a relationship you simply set the cascading attribute of the <sql> field
describing the relation to "delete" (or "all"):

<field name="book" type="myapp.Book" >
<sql name="book_id" cascading="delete" />

</field>

In case of bidirectional relationships, be aware that it matters on which end you enable cascading deletion. It is
also possible to enable it on both ends.

3.9.6.3.3. Scenarios

3.9.6.3.3.1. db.remove()

Let's say we have the objects Author and Book and they are in a one-to-one relationship, with every Book

having exactly one Author. The database looks like this:

Table 3.26. Author

id name

1 "John Jackson"

Table 3.27. Book

id title author_id

1 "My Life" 1

Now, since we specified the relationship to cascade deletion, if we remove the book, the author gets removed
too (after all, an author without a book isn't really an author).

db.begin();

Book b1 = db.load(Book.class, 1);
db.remove(db1);

db.commit();

Afterwards, the database predictably looks like this:

Castor JDO

Castor (1.3.3) 191

Table 3.28. Author

id name

(empty table)

Table 3.29. Book

id title author_id

(empty table)

Cascading the deletion of objects in to-many relationships works in exactly the same way.

Note: You need to explicitly invoke db.remove() to delete an object. Simply setting a relational property to
NULL or removing an item from a collection will not remove the corresponding entity from the database, even
with cascading deletion enabled.

3.9.6.3.4. See also

• How to use cascading operations - overview

3.9.6.4. How to cascade update

3.9.6.4.1. Overview

When working with long transactions, you can cascade the db.update() operation, so that, for example,
updating the root of a large object graph causes all connected entities to update as well (provided cascading
update is enabled on the particular relationships, of course).

3.9.6.4.2. Enabling cascading update

To enable cascading update on a relationship you simply set the cascading attribute of the <sql> field
describing the relation to "update" (or "all"):

<field name="book" type="myapp.Book" >
<sql name="book_id" cascading="update" />

</field>

In case of bidirectional relationships, be aware that it matters on which end you enable cascading update. It is
also possible to enable it on both ends.

3.9.6.4.3. Scenarios

3.9.6.4.3.1. db.update()

Let's say we have the objects Author and Book and they are in a one-to-one relationship, with every Book

having exactly one Author. The database looks like this:

Castor JDO

Castor (1.3.3) 192

Table 3.30. Author

id name

1 "John Jackson"

Table 3.31. Book

id title author_id

1 "My Life" 1

Now let's change the book's title. Note that we never directly load the book and that the change happens outside
of any transaction:

db.begin();
Author a1 = db.load(Author.class, 1);
db.commit();

a1.getBook().setName("My Fantastic Life");

db.begin();
db.update(a1);
db.commit();

Afterwards, the database looks like this:

Table 3.32. Author

id name

1 "John Jackson"

Table 3.33. Book

id title author_id

1 "My Fantastic Life" 1

3.9.6.4.4. Limitations

• To-many relationships are currently not supported (except many-to-one).

• As it is now, enabling cascading update will cause db.update() to also create any entities that have not yet
been persisted. (In other words: setting cascading to "update" has the same effect as setting it to "update
create", but only when invoking db.update().)

3.9.6.4.5. See also

Castor JDO

Castor (1.3.3) 193

• How to use cascading operations - overview

3.9.7. Caches

3.9.7.1. How to use Castor in a J2EE cluster

3.9.7.1.1. Introduction

With release 0.9.9, several cache providers have been added that are distributed caches per se or can be
configured to operate in such a mode. This effectively allows Castor JDO to be used in a clustered J2EE
(multi-JVM) environment, where Castor JDO runs on each of the cluster instances, and where cache state is
automatically synchronized between these instances.

In such an environment, Castor JDO will make use of the underlying cache provider to replicate/distribute the
content of a specific cache between the various JDOManager instances. Through the distribution mechanism of
the cache provider, a client of a Castor JDO instance on one JVM will see any updates made to domain objects
performed against any other JVM/JDO instance.

3.9.7.1.2. Intended Audience

Anyone who wants to use Castor JDO in a J2EE cluster.

The example given describes the use of the Coherence cache provider to enable distributed caching.

3.9.7.1.3. Prerequisites

You should have a valid class mapping for a Java class, similar to the following one:

<mapping>
<class name="com.xyz.MyOtherObject" identity="id">

<field name="id" type="integer">
...

</field>
<field name="description" type="string">

...
</field>

</class>
</mapping>

3.9.7.1.4. Steps

Here is how to proceed.

3.9.7.1.4.1. Add <cache-type> element to class mapping

Add a <cache-type> element as shown below, specifying the cache provider to use in the 'type' attribute.

<mapping>
<class name="com.xyz.MyOtherObject" identity="id">

<cache-type type="coherence"/>
<field name="id" type="integer">

...
</field>
<field name="description" type="string">

...

Castor JDO

Castor (1.3.3) 194

</field>
</class>

</mapping>

This instructs Castor JDO to use the 'coherence' cache provider for objects of type com.xyz.MyOtherObject. It
is the cache provider that is responsible to distribute any changes to the cache state to all other Castor JDO
instances within the same cluster.

3.9.7.1.4.2. Add Coherence JARs to CLASSPATH

Add the Coherence JARs to the class path of your e.g. web application by putting the JARs into the
WEB-INF/lib folder of your web application.

3.9.7.1.5. References

• Caching

• Caching and clustered environments

• Tangosol Coherence

3.9.8. Connection pooling

3.9.8.1. How to use Jakarta's DBCP for connection pooling

3.9.8.1.1. Introduction

This HOW-TO provide users with instructions on hot to configure Castor JDO so that Apache Jakarta's DBCP
package is used as a connection pool.

3.9.8.1.2. Intended audience

Anyone who wants to use DBCP as connection pool mechanism with Castor JDO.

3.9.8.1.3. Steps

Below are defined the steps to configure Castor JDO to use DBCP's BasicDataSource for connection pooling.

3.9.8.1.3.1. Configuration

To use a DBCP BasicDataSource with Castor JDO, please provide the following <data-source> entry in the
jdo-conf.xml file.

<data-source class-name="org.apache.commons.dbcp.BasicDataSource">
<param name="driver-class-name" value="com.mysql.jdbc.Driver" />
<param name="username" value="test" />
<param name="password" value="test" />
<param name="url" value="jdbc:mysql://localhost/test" />
<param name="min-active" value="10" />
<param name="max-active" value="40" />

</data-source>

Above example makes use of the mySQL JDBC driver to establish a connection pool to a mySQL instance

Castor JDO

Castor (1.3.3) 195

http://www.tangosol.com/coherence.jsp

named 'test' running on the same machine as Castor itself. The pool initially holds 10 connections, but is
configured to allow a maximum of 40 active connections at the same time.

3.9.8.1.4. References

• Other pooling examples

3.9.9. Use of Castor in J2EE applications

3.9.9.1. How to use Castor with(in) distributed J2EE transactions

3.9.9.1.1. Overview

J2EE applications depend on the J2EE container (hosting Servlet, EJB, etc) to configure a database connection
(as well as other resource managers) and use JNDI to look it up. This model allows the application deployer to
configure the database properties from a central place, and gives the J2EE container the ability to manage
distributed transactions across multiple data sources.

This HOW-TO shows how to seamlessly use Castor JDO in such a managed environment, and how to make
Castor participate in a distributed transaction.

3.9.9.1.2. Intended audience

Anyone who wants to use Castor JDO with(in) distributed J2EE transactions.

3.9.9.1.3. Steps

The following sections highlight the steps necessary to use Castor JDO seamlessly in such a (managed)
environment, and how to make Castor participate in a distributed transaction.

3.9.9.1.3.1. Make Castor participate in a J2EE transaction

The following code fragment shows how to use JNDI to lookup a database and how to use a JTA
UserTransaction instance to manage the J2EE (aka distributed) transaction:

// Lookup databse in JNDI
Context ctx = new InitialContext();
Database db = (Database) ctx.lookup("java:comp/env/jdo/mydb");

// Begin a transaction
UserTransaction ut = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
ut.begin();
// Do something
. . .
// Commit the transaction, close database
ut.commit();
db.close();

3.9.9.1.3.2. Make Castor participate in container-managed J2EE transaction

If the transaction is managed by the container, a common case with EJB beans and in particular entity beans,
there is no need to begin/commit the transaction explicitly. Instead the application server takes care of enlisting
the database used by Castor JDO to insert domain entities into a database in the ongoing transaction and
commiting/rolling back at the relevant time.

Castor JDO

Castor (1.3.3) 196

The following code snippet relies on the container to manage the transaction.

InitialContext ctx;
UserTransaction ut;
Database db;

// Lookup databse in JNDI
ctx = new InitialContext();
db = (Database) ctx.lookup("java:comp/env/jdo/mydb");

// Do something
. . .
// Close the database
db.close();

As transaction enregistration is dealt with at the J2EE container, it is not necessary anymore to obtain a
UserTransaction and start/commit the transaction manually.

3.9.9.1.3.3. Resource enlisting

Instead of constructing required resources directly, a typical J2EE application uses the JNDI API to look up
resources from centrally managed place such as a naming and directory service. In such an environment, Castor
JDO takes on the role of a managed resource as well. It follows that, instead of constructing a
org.exolab.castor.jdo.JDOManager directly, a typical J2EE application should use JNDI to look it up.

We thus recommend enlisting the JDOManager object under the java:comp/env/jdo namespace, compatible
with the convention for listing JDBC resources.

3.9.9.1.4. Tips

• When using Castor JDO in a J2EE environment, Castor allows you to enable a special Database instance
pooling support. This option is configured via the
org.exolab.castor.jdo.JDOManager.setDatabasePooling(boolean) method; by default, it is turned off.
This option only affects JDOManager if J2EE transactions are used and if a transaction is associated with the
thread that calls {@link #getDatabase}.

If database pooling is enabled, JDOManager will first search in this special pool to see if there is already a
org.exolab.castor.jdo.Database instance for the current transaction. If found, it returns this
org.exolab.castor.jdo.Database instance; if not, it creates a new one, associates it will the transaction
and returns the newly created org.exolab.castor.jdo.Database instance.

Please make sure that you call this method before calling {@link #getDatabase}.

3.9.9.1.5. References

• Other pooling examples

3.9.10. Database specifica

3.9.10.1. How to connect to a Apache Derby instance in network server mode

3.10. Castor JDO - Tips & Tricks

Castor JDO

Castor (1.3.3) 197

3.10.1. Logging and Tracing

When developing using Castor, we recommend that you use the various setLogWriter methods to get detailed
information and error messages.

Using a logger with org.exolab.castor.mapping.Mapping will provide detailed information about mapping
decisions made by Castor and will show the SQL statements being used.

Using a logger with org.exolab.castor.jdo.JDO will provide trace messages that show when Castor is
loading, storing, creating and deleting objects. All database operations will appear in the log; if an object is
retrieved from the cache or is not modified, there will be no trace of load/store operations.

Using a logger with org.exolab.castor.xml.Unmarshaller will provide trace messages that show conflicts
between the XML document and loaded objects.

A simple trace logger can be obtained from org.exolab.castor.util.Logger. This logger uses the standard
output stream, but prefixes each line with a short message that indicates who generated it. It can also print the
time and date of each message. Since logging is used for warning messages and simple tracing, Castor does not
require a sophisticated logging mechanism.

Interested in integratating Castor's logging with Log4J? Then see this question in the JDO FAQ.

3.10.2. Access Mode

If you are using JDO objects with the default access mode ('shared') and too many transactions abort when
attempting to commit due to locks, you should consider upgrading to an 'exclusive' mode. When two
transactions attempt to modify and store the same object at the same time, lock issues arise. Upgrading to an
'exclusive' mode will prevent concurrent transactions from modifying the same object at once.

If too many transactions abort when attempting to commit due to dirty checking, you should consider
upgrading to a 'locked' mode. When external database access modifies the same objects being managed by
Castor, Castor will complain that objects are dirty. Upgrading to a 'locked' mode will prevent concurrent
update.

Be advised that 'exclusive' mode introduces lock contention in the Castor persistence engine, and 'locked' mode
adds lock contention in the database. Lock contention has the effect of slowing down the application and
consuming more CPU.

If too many transaction abort due to deadlock detection, consider modifying the application logic. Deadlock
occurs when two transactions attempt to access the same objects but not in the same order.

3.10.3. Inheritence

There are two types of inheritence: Java inheritence and relational inheritence.

With Java inheritence, two objects extend the same base class and map to two different tables. The mapping file
requires two different mappings for each of the objects. For example, if Employee and Customer both extend
Person, but Employee maps to the table emp and Person to the table person, the mapping file should map both
of these objects separately.

With relation inheritence, one table provides the base information and another table provides additional
information using the same primary keys in both. Use the extends attribute to specify such inheritence in the
mapping file. For example, if Computer extends Product and the table comp provides computer-specific

Castor JDO

Castor (1.3.3) 198

columns in addition to product columns in prod, the mapping for Computer will specify Product as the
extended class.

When a class just extends a generic base class or implements an interface, this form of inheritence is not
reflected in the mapping file.

3.10.4. Views of Same Object

It is possible to use different objects and mappings to the same tables. For example, it is possible to define a
subset of a table and load only several of the columns, or load an object without its relations.

To determine the first and last names and e-mail address of an object without loading the entire person object,
create a subset class and map that class to a portion of the table. Such a class cannot be used to create a new
person, but can be used to delete or modify the person's details.

Use partial views with care. If you attempt to load the same record using a full object and a subset object,
changes to one of these objects are allowed, but changes to both will result in a conflict and roll back the
transaction. Locking will not work properly between full and subset objects. Also note, that each of the two
objects will have its own cache, so if you update the first object and load the second, you may obtain old
values. To avoid this situation you may turn off the cache for both objects:

<class ... >
<cache-type type="none">
...

</class>

3.10.5. Upgrading Locks

When an object is loaded into memory in the default access mode ('shared'), a read lock is acquired on that
object. When the transaction commits, if there are changes to the object a write lock will be required. There is
no guarantee that a write lock can be acquired, e.g. if another transaction attempts to change the same object at
the same time.

To assure concurrent access, you may upgrade the object's lock by calling the
org.exolab.castor.jdo.Database.lock(java.lang.Object) method. This method will either acquire a write
lock or return if a timeout elapses and the lock could not be acquired. Once a lock has been acquired, no other
transaction can attempt to read the object until the current transaction completes.

Object locking is recommended only if concurrent access results in conflicts and aborted transactions.
Generally locks results in lock contention which has an effect on performance.

3.10.6. NoClassDefFoundError

Check your CLASSPATH, check it often, there is no reason not to!

3.10.7. Create method

Castor requires that classes have a public, no-argument constructor in order to provide the ability to marshal &
unmarshal objects of that type.

create-method is an optional attribute to the <field> mapping element that can be used to overcome this

Castor JDO

Castor (1.3.3) 199

restriction in cases where you have an existing object model that consists of, say, singleton classes where
public, no-argument constructors must not be present by definition.

Assume for example that a class "A" that you want to be able to unmarshal uses a singleton class as one of its
properties. When attempting to unmarshal class "A", you should get an exception because the singleton property
has no public no-arg constructor. Assuming that a reference to the singleton can be obtained via a static
getInstance() method, you can add a "create method" to class A like this:

public MySingleton getSingletonProperty()
{

return MySingleton.getInstance();
}

and in the mapping file for class A, you can define the singleton property like this:

<field name="mySingletonProperty"
type="com.u2d.MySingleton"
create-method="getSingletonProperty">

<bind-xml name="my-singleton-property" node="element" />
</field>

This illustrates how the create-method attribute is quite a useful mechanism for dealing with exceptional
situations where you might want to take advantage of marshaling even when some classes do not have
no-argument public constructors.

Note

As of this writing, the specified create-method must exist as a method in the current class (i.e. the
class being described by the current <class> element). In the future it may be possible to use
external static factory methods.

3.11. Castor JDO - Advanced features
Werner Guttmann <werner DOT guttmann AT gmx DOT net>

3.11.1. Introduction

As explained at the introduction to Castor JDO, Castor has support for many advanced features such as
caching, depend relations, inheritance, polymorphism, etc. The below sections detail these features, as their
understanding is required to use Castor JDO in a performant and secure way.

3.11.2. Caching

All information related to caching and related concepts supported by Castor has been consolidated into one
place, and is available here.

3.11.3. Dependent and related relationships

Castor JDO

Castor (1.3.3) 200

Castor distinguishes the relationship of two objects as dependent or related, and maintains the life cycle
independently for the two types of relationships. Starting from Castor 0.9, the developer can explicitly define a
dependent relationship in the mapping file.

When using independent relations, related objects' life cycle is independent of each other, meaning that they
have to be created, removed and updated (for long transaction) independently.

When using dependent relations, one data object class must be declared as depends on one other data object
class in the mapping file, and such an object is called a dependent data object class. A data object class without
depends declared in the mapping is called a master object. A master object can be depended upon by zero or
more dependent data object class.

As of Castor 0.9, a dependent object class can be related to other master data object classes including extended
classes, but cannot depend on more than one master class.

If an object class declared as depends on another class, it may not be created, removed or updated separately.
Attempting to create, remove or update a dependent object will result in ObjectNotPersistcapableException.
Note that Castor doesn't allow a dependent object instance to change its master object instance during a
transaction. Each dependent object can have only one master object. Both dependent and master objects must
have identities, and may or may not make use of key-generators.

Here is the DTD for declaring dependent object:

<!ATTLIST class name ID #REQUIRED
extends IDREF #IMPLIED
depends IDREF #IMPLIED
identity CDATA #IMPLIED
access (read-only | shared | exclusive | db-locked) "shared"
key-generator IDREF #IMPLIED

For example,

<mapping>
<class name="com.xyz.MyDependentObject"

depends="com.xyz.MyObject">
...

</class>
</mapping>

declares the data object class com.xyz.MyDependentObject as a dependent upon class com.xyz.MyObject.

3.11.4. Different cardinalities of relationship

Castor supports different cardinalities of relationship, namely one-to-one, one-to-many, and many-to-many.
Many-to-many relationship must be related rather than dependent, because each dependent object can have
only one master object.

Many-to-many requires a separate table for storing the relations between two types of objects. Many-to-many
introduces two attributes, namely many-key and many-table that reside in the <sql> element which is a
sub-element of the <field> element. For all many-to-many relations, a many-table must be specified. If the
column name of the primary key of the class is different from the foreign keys columns of the class in the
relation tables, then the relation table columns can be specified using the many-key attributes. Similarly, if the
column name of the primary key of the related class is different from the foreign key columns of the related
class, then the relation table columns can be specified using the name attribute.

Castor JDO

Castor (1.3.3) 201

The many-table is used to store relations in a separate table

<mapping>
<class>

<field>
<sql many-key="#OPTIONAL" name="#OPTIONAL"

many-table="#REQURIED">
</field>

</class>
</mapping>

So, for example, if the SQL table is the following,

Table 3.34. employee_table

id name salary

1482 Smith, Bob $123,456

628 Lee, John $43,210

1926 Arnold, Pascal $24,680

Table 3.35. department_table

id name comment

3 Accounting

7 Engineering The very important department. :-)

Table 3.36. employee_department

e_id d_id

....

Then, the mapping for employee data object would look like this

<mapping>
<class name="com.xyz.Employee" identity="id">

<map-to table="employee_table"/>
<field name="id" type="integer">

<sql name="id"/>
</field>
<field>

<sql many-table="employee_department"
many-key="e_id" name="d_id"/>

</field>
<field name="salary">

<sql name="salary" type="integer">
</field>

</class>
</mapping>

Castor JDO

Castor (1.3.3) 202

3.11.5. Lazy Loading

As of release 0.9.6, Castor has full support for lazy loading object instances referenced as part of all relation
types currently supported:

• 1:1 relations

• 1:m relations

• M:N relations.

3.11.5.1. 1:1 relations

As of release 0.9.6, Castor supports lazy-loading of 1:1 relations. Imagine the following class mapping:

<mapping>
<class name="com.xzy.Department">

...
<field "employee" type="com.xyz.Employee" lazy="true" />
...

</class>
</mapping>

Per definition, when an instance of Department is loaded through e.g. Database.load(), Castor will not
(pre-)load the Employee instance referenced (as such reducing the size of the initial query as well as the size of
the result set returned). Only when the Emplyoee instance is accessed through Department.getEmployee(),
Castor will load the actual object into memory from the persistence store.

This means that if the Employee instance is not accessed at all, not only will the initial query to load the
Department object have had its complexity reduced, but no performance penalty will be incurred for the
additional access to the persistence store either.

3.11.5.2. 1:M and M:N relations

The elements in the collection are only loaded when the application asks for the object from the collection,
using, for example, iterator.next(). The iterator in Castor's lazy collection is optimized to return a loaded object
first.

In the mapping file, lazy loading is specified in the element of the collection's <field>, for example,

<mapping>
<class name="com.xzy.Department">

...
<field name="employee" type="com.xyz.Employee" lazy="true"

collection="collection"/>
</class>

</mapping>

declares that the collection of type Employee in a Department is lazy loaded.

If lazy loading is specified for a field of a class, Castor will set the field with a special collection which contains
only the identities of the objects. Because of that, it requires the data object to have the method setDepartment(
Collection department) in the data object class which was not required in previous versions.

Castor JDO

Castor (1.3.3) 203

Note

Please note that currently only the java.util.Collection type is supported.

3.11.6. Multiple columns primary keys

The support of multiple column primary keys (also called compound primary keys) was another major
enhancement added into Castor 0.9. Specifying multiple column primary keys is simple and straightforward, in
the mapping file,

<mapping>
<class name="com.xyz.MyObject" identity="firstName lastName">

<field name="firstName" type="string">
<sql name="fname"/>

</field>
<field name="lastName" type="string">

<sql name="lname"/>
</field>

...
</class>

</mapping>

Multiple column primary keys work with both master and dependent objects, all cardinalities of relationship,
including one-to-one, one-to-many and many-to-many, as well as lazy loading.

However, multiple column primary keys should only be used to adhere to an existing database design, not when
designing a new database. In general, it is not a good idea to use an identity or identities which can be modified
by the user, or which contain application-visible data. For example, if the system allows the user name to be
changed, using user name as identity is highly discouraged, as this practice can require a major data migration
to a new schema to update all foreign keys to adhere to a new primary key structure, should the user name no
longer be adequate as a primary key. It should be noted that Castor doesn't support identity change, as specified
in the ODMG 3.0 specification. So, primary keys changes are almost certainly a large trade off between data
integrity and performance. Well chosen primary keys are usually single (not multiple) column numeric or
character fields for the reasons outlined above, as well as performance, as joining operations are faster for
single column primary keys.

3.11.7. Callback interface for persistent operations

For the various persistence operations as available through the org.exolab.castor.jdo.Database interface, Castor
JDO provides a callback interface that informs the implementing class on events taking place related to selected
persistence operations.

Once your entity class implements the org.exolab.castor.jdo.Persistence interface, you'll have to provide
implementations for the following methods (with their respective semantics described next to them):

Table 3.37. Interface methods

Method Description

jdoAfterCreate() Indicates that an object has been created in persistent
storage.

jdoAfterRemove() Indicates that an object has been removed from
persistent storage.

Castor JDO

Castor (1.3.3) 204

Method Description

jdoBeforeCreate() Indicates that an object is to be created in persistent
storage.

jdoBeforeRemove() Indicates that an object is to be removed from
persistent storage.

jdoLoad() Indicates that the object has been loaded from
persistent storage.

jdoPersistent(Database) Sets the database to which this object belongs when
this object becomes persistent.

jdoStore() Indicates that an object is to be stored in persistent
storage.

jdoTransient() Indicates the object is now transient.

jdoUpdate() Indicates that an object has been included to the
current transaction by means of db.update() method
(in other words, at the end of a "long" transaction).

3.12. Running the self-executable Castor JDO examples
Werner Guttmann <werner DOT guttmann AT gmx DOT net>

As of release 1.0M3, the Castor JDO examples have been packaged in a new way and are available for
download at the download page. In the following sections, we explain the steps required to unpack this new
archive, and how to execute the tests.

3.12.1. Download the castor-$RELEASE-examples.zip archive

In order to be able to run the new Castor JDO examples, please download the new
castor-${RELEASE}-examples.zip from the download page and put it into some location on your computer.

3.12.2. Unpack the ZIP file

To unpack the ZIP file downloaded, issue one of the following commands:

unzip castor-1.1M2-examples.zip

or

jar xvf castor-1.1M2-examples.zip

You can now run the examples using the directions provided in the next section.

3.12.3. Running the Castor JDO samples

In the directory where you have unpacked the ZIP file you'll find a castor-1.1M2-examples.jar. In addition,
you'll find a directory named lib where you'll find several JAR files required to run the samples.

Castor JDO

Castor (1.3.3) 205

http://castor.org/download.html
http://castor.org/download.html

To execute the samples, issue the following command:

java -jar castor-1.1M2-examples.jar

... et voila ! You'll see various lines of logging output flashing by whilst the Castor JDO samples are executing
against a database.

3.12.4. What happens

The Castor JDO sample will test persistence between a set of Java classes (Product, ProductGroup,
ProductDetail, etc.) and perform this code against an Apache Derby instance as RDBMS. For this purpose, the
sample code will start an embedded Derby instance on the fly, create the required tables, and then continue to
execute several code fragments using various Castor JDO artifacts (JDOManager, Database, etc.) against this
embedded database.

In other words, everything is self-contained and there is no need to install a database, create a database schema,
or create database tables. Everything required for the tests is initiated and set up from within the sample code.

3.12.5. Hints

• If it is not set yet, you might have to set the JAVA_HOME environment variable, and add the
$JAVA_HOME/bin directory to your path.

Castor JDO

Castor (1.3.3) 206

Chapter 4. Advanced JDO

4.1. Castor JDO - Caching

4.1.1. Introduction

As explained at the introduction to Castor JDO, Castor has support for many advanced features such as
caching. The below sections detail the features related to caching in Castor JDO, as their understanding is
required to use Castor JDO in a performant and secure way.

In general, performance caches enhance the application performance by reducing the number of read operations
against the persistence storage, by storing and reusing the last read or committed values of the object.
Performance caches do not affect the behavior of short transactions or locking. It only affects persistence
objects that have been released from any transactional context.

Starting from Castor 0.8.6, a performance cache implementation has been added. At a technical level, Castor
maintains separate (performance) caches for each object type specified in the JDO mapping provided, allowing
users to specify - for each object type individually - the type and capacity of the cache.

By default, the following cache types are available:

Table 4.1. Available cache types

name Vendor Version Distributable? Open
source/commercial

high
volume/performance

Added in
release

none Built-in - No Open Source No

unlimited Built-in - No Open Source No

count-limited Built-in - No Open Source No

time-limited Built-in - No Open Source No

coherence Tangosol
Coherence

2.5 Yes Commercial Yes 0.9.9

jcs JCS 1.2.5 Yes Open source Yes 0.9.9

fkcache FKCache 1.0-beta6 No Open Source No 0.9.9

oscache OSCache 2.5 Yes Open Source No 1.0

fifo Built-in - No Open Source Yes 1.0

lru Built-in - No Open Source Yes 1.0

ehcache Built-in - Yes Open Source ? 1.0.1

gigaspaces JCS 5.0 Yes Commercial Yes 1.0.1

As some of these cache providers allow for allow you to use it in a distributed mode, this allows Castor JDO
to be used in a clustered (multi-JVM) environment. Please see the section below for short summary of this
feature.

Castor (1.3.3) 207

http://www.tangosol.com/coherence.jsp
http://www.tangosol.com/coherence.jsp
http://jakarta.apache.org/jcs
http://jcache.sourceforge.net/
http://www.opensymphony.com/oscache/
http://jakarta.apache.org/jcs

Per definition, all build-in performance caches are write-through, because all changes to objects as part of a
transaction should be persisted into the cache at commit time without delay.

For problems related to the use of performance caches, please consult with the relevant entries in the JDO
F.A.Q..

4.1.2. Caching and long transactions

As it stands currently, performance caches also serve a dual purpose as dirty checking caches for
long-transactions. This limitation implies that the object's availability in the performance cache determines the
allowed time span of a long transaction.

This might become an issue when performance caches of type 'count-limited' or 'time-limited' are being used,
where objects will eventually be disposed. If an application tries to update an object that has been disposed
from the dirty checking cache, an ObjectModifedException will be thrown.

4.1.3. Configuration

The DTD declaration is as follows:

<!ELEMENT cache-type (param*)>
<!ATTLIST cache-type

type (none | count-limited | time-limited | unlimited |
coherence | fkcache | jcache | jcs | oscache |
fifo | lru | ehcache | gigaspaces) "count-limited"

debug (true|false) "false"
capacity NMTOKEN #IMPLIED>

<!ELEMENT param EMPTY>
<!ATTLIST param

name NMTOKEN #REQUIRED
value NMTOKEN #REQUIRED>

With release 1.0 of Castor the DTD has changed but it is backward compatible to the old one and allows to
enable debugging of cache access for a specific class as well as passing individual configuration parameters to
each cache instance. Only count-limited and time-limited of the current build-in cache types support
parameters. Parameter names are case sensitive and are silently ignored if they are unknown to a cache type.

It need to be noted that there are 3 parameter names that are reserved for internal use. If you specify a
parameter with one of the names: type, name or debug their value will silently be overwritten with another one
used internally.

Example 4.1. Configuration sample - count-limited

A count-limited least-recently-used cache (LRU) for 500 objects can be specified by:

<cache-type type="count-limited" capacity="500"/>

or

<cache-type type="count-limited"/>
<param name="capacity" value="500"/>

</cache-type>

Advanced JDO

Castor (1.3.3) 208

If both, the capacity attribute and parameter with name="capacity" is specified, the parameter value takes
precedence over the attribute value.

Example 4.2. Configuration sample - time-limited

A time-limited first-in-first-out cache (FIFO) that expires objects after 15 minutes can be specified by:

<cache-type type="time-limited" capacity="900"/>

or

<cache-type type="time-limited"/>
<param name="ttl" value="900"/>

</cache-type>

If both, the capacity attribute and parameter with name="ttl" is specified, the parameter value takes precedence
over the attribute value.

The debug attribute can be used to enable debugging for objects of a single class. In addition to setting this
attribut to true you also need to set logging level of org.castor.cache.Cache to debug.

Note

The default cache-type is count-limited with a capacity of 30. This will be used when no
cache-type is specified in the mapping for a class.

4.1.4. fifo and lru cache providers

The cache types fifo and lru are based on a set of articles in the O'Reilly Network by William Grosso, to
implement a simplified and 1.3-compatible implementation of a Hashbelt algorithm.

Hashbelts are simple, in principle. Instead of walking all objects and finding out when they're supposed to
expire, use a "conveyor belt" approach. At any particular point in time, objects going into the cache go into the
front of the conveyor belt. After a certain amount of time or when the size limit of a container has been
reached, move the conveyor belt - put a new, empty container at the front of the conveyor belt to catch new
objects, and the one that drops off of the end of the conveyor belt is, by definition, ready for garbage collection.

As seen in his system, you can use a set of pluggable strategies to implement the actual hashbelt bits. A
container strategy allows you to change out the implementation of the container itself - from simple
hashtable-based implementations, up through more complex uses of soft referenced or hashset-based
implementations, depending on what you need and what you want it to be used for. A pluggable "expire
behavior" handler allows you to determine what action is taken on something which drops off of the bottom of
the conveyor belt.

In difference to all other cache types the fifo and lru cache types offer various configuration options. Both of
them have 6 parameters to configure their behaviour.

Table 4.2. cache types parameters

Advanced JDO

Castor (1.3.3) 209

parameterdescription

containersThe number of containers in the conveyor belt. For example: If a box will drop off of the conveyor
belt every 30 seconds, and you want a cache that lasts for 5 minutes, you want 5 / 30 = 6 containers
on the belt. Every 30 seconds, another, clean container goes on the front of the conveyor belt, and
everything in the last belt gets discarded. If not specified 10 containers are used by default. For
systems with fine granularity, you are free to use a large number of containers; but the system is most
efficient when the user decides on a "sweet spot" determining both the number of containers to be
managed on the whole and the optimal number of buckets in those containers for managing. This is
ultimately a performance/accuracy tradeoff with the actual discard-from-cache time being further
from the mark as the rotation time goes up. Also the number of objects discarded at once when
capacity limit is reached depends upon the number of containers.

capacityMaximum capacity of the whole cache. If there are, for example, ten containers on the belt and the
capacity has been set to 1000, each container will hold a maximum of 1000/10 objects. Therefore if
the capacity limit is reached and the last container gets droped from the belt there are up to 100
objects discarted at once. By default the capacity is set to 0 which causes capacity limit to be ignored
so the cache can hold an undefined number of objects.

ttl The maximum time an object lifes in cache. If the are, for example, ten containers and ttl is set to 300
seconds (5 minutes), a new container will be put in front of the belt every 300/10 = 30 seconds while
another is dropped at the end at the same time. Due to the granularity of 30 seconds, everything just
until 5 minutes 30 seconds will also end up in this box. The default value for ttl is 60 seconds. If ttl is
set to 0 which means that objects life in cache for unlimited time and may only discarded by a
capacity limit.

monitor The monitor intervall in minutes when hashbelt cache rports the current number of containers used
and objects cached. If set to 0 (default) monitoring is disabled.

container-classThe implementation of org.castor.cache.hashbelt.container.Container interface to be used for all
containers of the cache. Castor provides the following 3 implementations of the Container interface.

• org.castor.cache.hashbelt.container.FastIteratingContainer

• org.castor.cache.hashbelt.container.MapContainer

• org.castor.cache.hashbelt.container.WeakReferenceContainer

If not specified the MapContainer will be used as default.

reaper-classSpecific reapers yield different behaviors. The GC reaper, the default, just dumps the contents to the
garbage collector. However, custom implementations may want to actually do something when a
bucket drops off the end; see the javadocs on other available reapers to find a reaper strategy that
meets your behavior requirements. Apart of the default
org.castor.cache.hashbelt.reaper.NullReaper we provide 3 abstract implementations of
org.castor.cache.hashbelt.reaper.Reaper interface:

• org.castor.cache.hashbelt.reaper.NotifyingReaper

• org.castor.cache.hashbelt.reaper.RefreshingReaper

• org.castor.cache.hashbelt.reaper.ReinsertingReaper

to be extended by your custom implementation.

Advanced JDO

Castor (1.3.3) 210

Example 4.3. Configuration sample - fifo

A fifo cache with default values explained above is specified by:

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="fifo"/>
...

</class>
...

</mapping>

Example 4.4. Configuration sample - lru

A lru cache with capacity=300 and ttl=300 is defined by:

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="lru" capacity="300"/>
...

</class>
...

</mapping>

or better by:

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="lru">

<param name="capacity" value="300"/>
<param name="ttl" value="300"/>

</cache-type>
...

</class>
...

</mapping>

Example 4.5. Configuration sample - fifo (custommized)

An example of a customized configuration of a fifo cache is:

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="fifo"/>

<param name="container" value="10"/>
<param name="capacity" value="1000"/>
<param name="ttl" value="600"/>
<param name="monitor" value="5"/>
<param name="container-class" value="org.castor.cache.hashbelt.container.WeakReferenceContainer"/>

Advanced JDO

Castor (1.3.3) 211

<param name="reaper-class" value="org.castor.cache.hashbelt.reaper.NullReaper"/>
</cache-type>
...

</class>
...

</mapping>

4.1.5. Caching and clustered environments

All of the cache providers added with release 0.9.9 are distributed caches per se or can be configured to operate
in such a mode. This effectively allows Castor JDO to be used in a clustered J2EE (multi-JVM) environment,
where Castor JDO runs on each of the cluster instances, and where cache state is automatically snychronized
between these instances.

In such an environment, Castor JDO wil make use of the underlying cache provider to replicate/distribute the
content of a specific cache between the various JDOManager instances. Through the distribution mechanism of
the cache provider, a client of a Castor JDO instance on one JVM will see any updates made to domain objects
performed against any other JVM/JDO instance.

Example 4.6. Configuration sample - Coherence

The following class mapping, for example, ...

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="coherence" />

...
</class>
...

</mapping>

defines that for all objects of type com.xyz.MyOtherObject Tangosol's Coherence cache provider should be
used.

Example 4.7. Configuration sample - Gigaspaces

The following class mapping, for example, ...

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="gigaspaces" />

...
</class>
...

</mapping>

defines that for all objects of type com.xyz.MyOtherObject the Gigaspaces cache provider should be used. As
Gigspaces supports various cache and clsuer modes, this cache provider allows product-specific configuration
as shown below:

Advanced JDO

Castor (1.3.3) 212

<mapping>
...
<class name="com.xyz.MyOtherObject">

...
<cache-type type="gigaspaces" >

<param name="spaceURL" value="/./" />
<param name="spaceProperties" value="useLocalCache" />

</cache-type>
...

</class>
...

</mapping>

4.1.6. Custom cache provider

As of release 0.9.6, Castor allows for the addition of user-defined cache implementations. Whilst Castor
provides a set of pre-built cache providers, offering a variety of different cache algorithms, special needs still
might require the application developer to implement a custom cache algorithm. Castor facilitates such need by
making available standardized interfaces and an easy to understand recipe for integrating a custom cache
provider with Castor.

As explained in org.exolab.castor.jdo.persist (API docs for the persists package),
org.exolab.castor.persist.LockEngine implements a persistence engine that caches objects in memory for
performance reasons and thus reduces the number of operations against the persistence storage.

The main component of this package is the interface org.castor.cache.Cache, which declares the external
functionality of a (performance) cache. Existing (and future) cache implementations (have to) implement this
interface, which is closely modelled after the java.util.Map interface.

Below is a summary of the steps required to build a custom cache provider and register it with Castor JDO:

1. Create a class that implements org.exolab.castor.persist.cache.Cache.

2. Create a class that implements org.exolab.castor.persist.cache.CacheFacto

3. Register your custom cache implementation with Castor JDO in the castor.properties file.

4.1.6.1. Cache implementation

Please create a class that implements the interface org.exolab.castor.persist.cache.Cache">Cache.

To assist users in this task, a org.castor.cache.AbstractBaseCache class has been supplied, which users
should derive their custom org.castor.cache.Cache instances from, if they wish so. Please consult existing
org.castor.cache.Cache implementations such as org.castor.cache.simple.TimeLimited} or
org.castor.cache.simple.CountLimited for code samples.

/**
* My own cache implementation
*/
public class CustomCache extends AbstractBaseCache {

...

}

Advanced JDO

Castor (1.3.3) 213

4.1.6.2. CacheFactory implementation

Please add a class that imnplements the org.castor.cache.CacheFactory interface and make sure that you
provide valid values for the two properties name and className.

To assist users in this task, a org.castor.cache.AbstractCacheFactory class has been supplied, which users
should derive their custom org.castor.cache.CacheFactory instances from, if they wish so. Please consult
existing org.castor.cache.CacheFactory implementations such as
org.castor.cache.simple.TimeLimitedFactory} or org.castor.cache.simple.CountLimitedFactory for
code samples.

/**
* My own cache factory implementation
*/
public class CustomCacheFactory extends AbstractCacheFactory {

/**
* The name of the factory
*/

private static final String NAME = "custom";

/**
* Full class name of the underlying cache implementation.
*/

private static final String CLASS_NAME = "my.company.project.CustomCache";

/**
* Returns the short alias for this factory instance.
* @return The short alias name.
*/

public String getName() {
return NAME;

}

/**
* Returns the full class name of the underlying cache implementation.
* @return The full cache class name.
*/

public String getCacheClassName() {
return CLASS_NAME;

}

}

4.1.6.3. Configuration

The file castor.properties holds a property org.castor.cache.Factories that enlists the available cache
types through their related CacheFactory instances.

#
Cache implementations
#
org.castor.cache.Factories=\
org.castor.cache.simple.NoCacheFactory,\
org.castor.cache.simple.TimeLimitedFactory,\
org.castor.cache.simple.CountLimitedFactory,\
org.castor.cache.simple.UnlimitedFactory,\
org.castor.cache.distributed.FKCacheFactory,\
org.castor.cache.distributed.JcsCacheFactory,\
org.castor.cache.distributed.JCacheFactory,\
org.castor.cache.distributed.CoherenceCacheFactory,\
org.castor.cache.distributed.OsCacheFactory,\
org.castor.cache.hashbelt.FIFOHashbeltFactory,\
org.castor.cache.hashbelt.LRUHashbeltFactory

Advanced JDO

Castor (1.3.3) 214

To add your custom cache implementation, please append the fully-qualified class name to this list as shown
below:

#
Cache implementations
#
org.castor.cache.Factories=\
org.castor.cache.simple.NoCacheFactory,\
org.castor.cache.simple.TimeLimitedFactory,\
org.castor.cache.simple.CountLimitedFactory,\
org.castor.cache.simple.UnlimitedFactory,\
org.castor.cache.distributed.FKCacheFactory,\
org.castor.cache.distributed.JcsCacheFactory,\
org.castor.cache.distributed.JCacheFactory,\
org.castor.cache.distributed.CoherenceCacheFactory,\
org.castor.cache.distributed.OsCacheFactory,\
org.castor.cache.hashbelt.FIFOHashbeltFactory,\
org.castor.cache.hashbelt.LRUHashbeltFactory,\
org.whatever.somewhere.nevermind.CustomCache

4.1.7. CacheManager - monitoring and clearing caches

Sometimes it is necessary to interact with Castor's (performance) caches to e.g. (selectively) clear a Castor
cache of its content, or inquire about whether a particular object instance (as identified by its identity) is cached
already.

For this purpose a org.exolab.castor.jdo.CacheManager can be obtained from a
org.exolab.castor.jdo.Database instance by issuing the following code:

JDO jdo =;
Database db = jdo.getDatabase();
CacheManager manager = db.getCacheManager();

This instance can subsequently be used to selectively clear the Castor performance cache using one of the
following methods:

• org.exolab.castor.jdo.CacheManager.expireCache()

• org.exolab.castor.jdo.CacheManager.expireCache(Class,Object)

• org.exolab.castor.jdo.CacheManager.expireCache(Class,Object[])

• org.exolab.castor.jdo.CacheManager.expireCache(Class[])

To inquire whether an object has already been cached, please use the following method:

• org.exolab.castor.jdo.CacheManager.isCached (Class, Object);

Please note that once you have closed the Database instance from which you have obtained the CacheManager,
the CacheManager cannot be used anymore and will throw a
org.exolab.castor.jdo.PersistenceException.

Advanced JDO

Castor (1.3.3) 215

4.2. OQL to SQL translator

4.2.1. News

Release 0.9.6:

• Added support for LIMIT clause for MS SQL Server.

• In the case a RDBMS does not support LIMIT/OFFSET clauses, a SyntaxNotSupportedException is thrown.

• Added support for a limit clause and an offset clause. Currently, only HSQL, mySQL and postgreSQL are
supported.

• Added an example section.

4.2.2. Status

The Castor OQL implementation is currently in phase 3 of development.

Note

This documentation is not yet finished

4.2.3. Introduction

This document describes an OQL to SQL translator to be added to the Castor JDO Java object Persistence API.
The translator will accept OQL queries passed as strings, and generate a parse tree of the OQL. It will then
traverse the tree creating the appropriate SQL. The user will then be able to bind parameters to parameterized
queries. Type checking will be performed on the bound parameters. When the user executes the query, the
system will submit the query to the SQL database, and then postprocess the SQL resultset to create the
appropriate result as a Java Object or literal. The current org.exolab.castor.mapping and
org.exolab.castor.persist packages will be used for metadata and RDBMS communication.

Four of the (now defunct) SourceXchange milestones for this project call for java source code. These
milestones will be referred to here as phase 1, 2, 3, and 4. There are many possible OQL features that can be
supported, but weren't discussed in the proposal or RFP. Many of these are probably unwanted. These
additional features are specified as phase 5, which is out of the scope of this SourceXChange project.

4.2.4. Overview

The parser will construct a parse tree as output from an OQL query string given as input. The OQL syntax is a
subset of the syntax described in the ODMG 3.0 specification section 4.12, with some additional constructs.
Following is a description of the supported OQL syntax, and its SQL equivalent.

Certain features of OQL may not be directly translatable to SQL, but may still be supported, by post processing
the query. For example, the first() and last() collection functions supported in OQL are not directly translatable
to standard SQL, but a resultset can be post-processed to return the appropriate values. Features requiring
post-processing of SQL resultsets will be documented as such below.

Advanced JDO

Castor (1.3.3) 216

http://www.odmg.org/

Currently the OQLQuery checks for correct syntax at the same time as it does type checking and other types of
error checking. The new code will involve a multiple pass strategy, with the following passes:

1. Parse the String query checking for syntax errors, and return a parse tree.

2. Traverse the parse tree checking for correct types, valid member and method identifiers, and use of features
which are unsupported. This pass may also generate some data necessary for creating the SQL.

3. Traverse the tree one final time, creating the equivalent SQL statement to the OQL Query originally passed.

4.2.5. Syntax

This section describes the first pass which will be done by the parser. The parser will create a StringTokenizer
like this:

StringTokenizer tokenizer
= new StringTokenizer(oql,
"\n\r\t,.()[]+-*/<>=:|$", true);

This will create a StringTokenizer with the delimiter characters listed in the second argument, and it will return
delimeters as well as tokens. The parser will also create a Vector to be used as a token buffer. As tokens are
returned from the StringTokenizer they will be added to the Vector. Older tokens will be removed from the
Vector when it reaches a certain size. The Vector will also be modified when the StringTokenizer returns multi
character operators as seperate tokens, for example the -> method invocation operator.

The parser will consume tokens from the StringTokenizer, generating a ParseTree. Each ParseTree node will
have a nodeType corresponding to its symbol in the OQL syntax. After each node is created it will look at the
next token and act acordingly, either modifying its properties (i.e. for DISTINCT property of selectExpr),
creating a new child node or returning an error. If the error travels up to the root node of the ParseTree, there is
a syntax error in the OQL submitted. At the end of this pass, the ParseTree will contain an apropriate
representation of the query, which will be analyzed, and used to create SQL. Below is the modified EBNF
which will be the Castor OQL syntax.

query ::= selectExpr
| expr

selectExpr ::= select [distinct]
projectionAttributes
fromClause
[whereClause]
[groupClause]
[orderClause]
[limitClause [offsetClause]]

projectionAttributes ::= projectionList
| *

projectionList ::= projection {, projection }

projection ::= field
| expr [as identifier]

fromClause ::= from iteratorDef {, iteratorDef}

iteratorDef ::= identifier [[as] identifier]
| identifier in identifier

whereClause ::= where expr

groupClause ::= group by fieldList {havingClause}

Advanced JDO

Castor (1.3.3) 217

havingClause ::= having expr

orderClause ::= order by sortCriteria

limitClause ::= limit queryParam

offsetClause ::= offset queryParam

sortCriteria ::= sortCriterion {, sortCriterion }

sortCriterion ::= expr [(asc | desc)]

expr ::= castExpr

castExpr ::= orExpr
| (type) castExpr

orExpr ::= andExpr {or andExpr}

andExpr ::= quantifierExpr {and quantifierExpr}

quantifierExpr ::= equalityExpr
| for all inClause : equalityExpr
| exists inClause : equalityExpr

inClause ::= identifier in expr

equalityExpr ::= relationalExpr
{(= | !=)

[compositePredicate] relationalexpr }
| relationalExpr {like relationalExpr}

relationalExpr ::= additiveExpr
{(< | <=

| > | >=)
[compositePredicate] additiveExpr }

| additiveExpr between
additiveExpr and additiveExpr

compositePredicate ::= some | any | all

additiveExpr ::= multiplicativeExpr
{+ multiplicativeExpr}

| multiplicativeExpr
{- multiplicativeExpr}

| multiplicativeExpr
{union multiplicativeExpr}

| multiplicativeExpr
{except multiplicativeExpr}

| multiplicativeExpr
{|| multiplicativeExpr}

multiplicativeExpr ::= inExpr {* inExpr}
| inExpr {/ inExpr}
| inExpr {mod inExpr}
| inExpr {intersect inExpr}

inExpr ::= unaryExpr {in unaryExpr}

unaryExpr ::= + unaryExpr
| - unaryExpr
| abs unaryExpr
| not unaryExpr
| postfixExpr

postfixExpr ::= primaryExpr{[index]}
| primaryExpr
{(. | ->)identifier[arglist]}

index ::= expr {, expr}
| expr : expr

argList ::= ([valueList])

primaryExpr ::= conversionExpr
| collectionExpr
| aggregateExpr
| undefinedExpr

Advanced JDO

Castor (1.3.3) 218

| collectionConstruction
| identifier[arglist]
| queryParam
| literal
| (query)

conversionExpr ::= listtoset(query)
| element(query)
| distinct(query)
| flatten(query)

collectionExpr ::= first(query)
| last(query)
| unique(query)
| exists(query)

aggregateExpr ::= sum(query)
| min(query)
| max(query)
| avg(query)
| count((query | *))

undefinedExpr ::= is_undefined(query)
| is_defined(query)

fieldList ::= field {, field}

field ::= identifier: expr

collectionConstruction ::= array([valueList])
| set([valueList])
| bag([valueList])
| list([valueList])
| list(listRange)

valueList ::= expr {, expr}

listRange ::= expr..expr

queryParam ::= $[(type)]longLiteral

type ::= [unsigned] short
| [unsigned] long
| long long
| float
| double
| char
| string
| boolean
| octet
| enum [identifier.]identifier
| date
| time
| interval
| timestamp
| set <type>
| bag <type>
| list <type>
| array <type>
| dictionary <type, type>
| identifier

identifier ::= letter{letter| digit| _}

literal ::= booleanLiteral
| longLiteral
| doubleLiteral
| charLiteral
| stringLiteral
| dateLiteral
| timeLiteral
| timestampLiteral
| nil
| undefined

booleanLiteral ::= true
| false

longLiteral ::= digit{digit}

Advanced JDO

Castor (1.3.3) 219

doubleLiteral ::= digit{digit}.digit{digit}
[(E | e)[+|-]digit{digit}]

charLiteral ::= 'character'

stringLiteral ::= "{character}"

dateLiteral ::= date
'longliteral-longliteral-longliteral'

timeLiteral ::= time
'longliteral:longLiteral:floatLiteral'

timestampLiteral ::= timestamp
'longLiteral-longLiteral-longLiteral
longliteral:longLiteral:floatLiteral'

floatLiteral ::= digit{digit}.digit{digit}

character ::= letter
| digit
| special-character

letter ::= A|B|...|Z|
a|b|...|z

digit ::= 0|1|...|9

special-character ::= ?|_|*|%|\

The following symbols were removed from the standard OQL Syntax for the following reasons:

• andthen: Cannot be implemented in a single SQL query.

• orelse: Same as above.

• import: This is advanced functionality which may be added later. This phase will use the castor mapping
mechanism to define the namespace.

• Defined Queries: This is another feature which can be added later. It is unclear where the queries would be
stored, and what their scope would be seeing as how this project is an OQL to SQL translator, and not an
ODBMS.

• iteratorDef was changed so that all instances of expr were replaced by identifier. This means that the from
clause can only contain extent names (class names), rather than any expression. This is the most common
case and others could create complicated SQL sub-queries or post-processing requirements.

• objectConstruction and structConstruction were removed. What is the scope of the constructed object or
struct, and how is a struct defined in Java?

The following symbols were added or modified.

• between added to relationalExpr.

• Optional type specification added to queryParam.

The rest of the standard OQL syntax remains unchanged. Certain syntactically correct queries may not be
supported in Castor. For example, top level expressions which do not contain a selectExpr anywhere in the
query may not be supported. This will be discussed further in the next section.

Advanced JDO

Castor (1.3.3) 220

4.2.6. Type and validity checking

The first pass over the ParseTree will do type checking, and create some structures used in the SQL generation
pass. It will also check whether the identifiers used are valid, and whether the query uses unsupported features.
The following table describes each type of node in the ParseTree, and how it will be processed in the first pass.

Table 4.3. The first pass

expr

• A query whose top level element
is an expr, rather than a
selectExpr will not be supported
within the scope of this project.
These queries can either be
stated as a selectExpr, like
aggregateExpr's, or they would
require post-processing of the
SQL results, like element()
first() and last().

Phase 5

projectionAttributes

• select * will return a Collection
of Arrays of Objects.

Phase 5

projectionList

• Selecting multiple fields will
return a Collection of Arrays of
Objects.

• When there are multiple fields
selected, a list of field names
and aliases will be kept for
checking validity of expr's in the
whereClause, groupClause, and
orderClause.

Phase 5

projection

• Alias identifier will be stored.

• expr in projection may only be
identifier, without an arglist.

Phase 1

projection

• expr in projection may only be
identifier (with optional
argList), aggregateExpr,
undefinedExpr, and postfixExpr
(for selecting fields and
accessors).

• The subquery in aggregateExpr

Phase 2

Advanced JDO

Castor (1.3.3) 221

and undefinedExpr can be
identifier (with optional arglist),
or postfixExpr for applying
these functions to fields and
accessors.

• If an identifier before the . or ->
contains an arglist, it will be
considered a SQL function, and
passed through to the RDBMS.

• If the postfixExpr contains one
of the above operators, the
mapping mechanism will be
used to determine if the path
expression is valid and to
generate a list of required join
tables, using the manyKey and
manyTable from the
JDOFieldDescriptor.

fromClause

• The class of the extent being
selected from will be stored, and
ClassDescriptor objects will be
instantiated.

Phase 1

whereClause

• expr in whereClause may
onlycontain orExpr, andExpr,
equalityExpr (without
compositePredicate),
relationalExpr, additiveExpr
(without set operators union and
except), multiplicativeExpr
(without set operator intersect),
unaryExpr, postFixExpr (must
be only primaryExpr, no array
or property reference or method
calls).

• primaryExpr may only contain
identifier (without an argList),
literal and queryParam.
Identifier will be checked
against object name and alias in
projectionList.

• For equalityExpr,
relationalExpr, aditiveExpr,
multiplicativeExpr, the left side
and right side expr's must

Phase 1

Advanced JDO

Castor (1.3.3) 222

evaluate to comparable types.

• For unaryExpr, simple type
checking for numerical or
character based types will be
performed.

• If the operands for any of the
relational, equality, additive,
multiplicative, or unary
operators is a query parameter,
an expected type will be
determined. If the parameter
included a specified type which
is incompatible with the system
determined type, an error will be
generated.

whereClause

• Support for built in OQL
functions will be added to the
whereClause: is_defined,
is_undefined.

• inExpr will be supported in
whereClause.

• inExpr will only allow
collectionConstruction for the
right side argument to in. No
subQueries will be allowed.

Phase 2

whereClause

• identifiers will be able to contain
an optional arglist. If the arglist
is before a . or -> the identifier
will be considered a SQL
function and will be passed
through to the DBMS.
Otherwise, the identifier will be
for an accessor method, or a
property name.

• Accessor methods and property
references will cause a check
through the ClassDescriptor and
FieldDescriptors for the object
type, and the required join
tables.

Phase 3

whereClause

• compositePredicate will be
suported in equalityExpr.

Phase 4

Advanced JDO

Castor (1.3.3) 223

• exists(query) will be supported.

• quantifierExpr will support for
all and exists.

• Subqueries will be supported on
the right side of the in operator.

groupClause, havingClause

• Will identify appropriate fields
in SQL schema for each expr.

• aggregateExpr will be
supported.

• Only expr's which translate to
SQL columns which are already
being selected will be supported.

Phase 4

orderClause

• May only contain expr's which
translate into SQL columns
which are already being
selected.

Phase 3

4.2.7. SQL Generation

After the first pass, the ParseTree is free of errors, and ready for the SQL generation step. The existing
implementation of the OQLParser uses the persistence API for SQL generation. This API lacks the necessary
features to generate SQL from any OQL. The SQLEngine class which implements Persistence is used to create
a JDBCQueryExpression. The SQL is derived from the finder, which is a JDBCQueryExpression produced by
the SQLEngine. The problem is that the SQLEngine only supports single objects. It cannot generate SQL for
path expressions like this:

select p.address from Person p

This query requires a SQL statement like this:

select address.* from person, address
where person.address_id = address.address_id

The buildFinder method should not be used to generate a queryExpression. The SQLEngine should be used to
get a ClassDescriptor, and to create a new QueryExpression. The OQLParser should use the methods in the
QueryExpression to generate the SQL. The JDBCQueryExpression which is an implementation of
QueryExpression is also lacking in necessary features. This class should continue to be used, but the following
features will need to be added:

addColumn(String)
For adding something to select without specifying the tablename, for use with functions (i.e. select
count(*))

Advanced JDO

Castor (1.3.3) 224

addTable(String)
For when the table has to be added manually.

addCondition(String)
Add a condition created outside the class, for nested expressions, and other expressions that are not of the
form table.column op table.column.

setDistinct(boolean)
Used for select distinct.

addOrderColumn(String tableName, String columnName, boolean desc)
Used for order by

addGroupExpr(String)
Used for group by

addHavingExpr(String)
Used for having.

The following table lists each type of tree node, and how it will be processed in the SQL generation pass.

Table 4.4. SQL generation pass

selectExpr

• distinct in the selectExpr will
result in a call to
setDistinct(true) in the
queryExpr.

Phase 2

projection

• The queryExpr will be
populated with the columns and
tables necessary to retrieve the
object. This will use code
similar to
SQLEngine.addLoadSql(...).

Phase 1

projection

• aggregateExpr and SQL
functions will be passed to
addColumn.

• undefinedExpr will be translated
to is null and is not null

• postfixExpr (for selecting fields
and accessors) will result in a
different group of select
expressions and "from tables"
being generated.

Phase 2

whereClause Phase 1

Advanced JDO

Castor (1.3.3) 225

• Entire expr in where clause will
be translated, and then added to
the QueryExpr, using a single
call to addCondition(String),
and multiple calls to
addTable(String).

whereClause

• is_defined() will translate into is
not null and is_undefined() will
translate into is null.

• inExpr will translate directly,
with the collectionConstruction
removed.

Phase 2

whereClause

• compositePredicate and
exists(query) translate directly to
SQL.

• For quantifierExpr, exists will
translate into an exists() SQL
subquery. for all will translate
into the contrapositive(?) exists
query, for example:

for all x in teachers:
x.name = 'Nis'

translates to:

not exists (select * from teachers
where name != 'Nis')

Phase 4

4.2.8. OQL FAQ

Please see the OQL section of the JDO FAQ.

4.2.9. Summary

The Parser and ParseTree classes will be improved through the phases of this project. The top level of OQL to
SQL translation will look very simple, like this:

OQLParser parser = new OQLParser(query);
ParseTree pt = parser.getParseTree();
pt.checkPass();
//the SQL generation pass
_expr = pt.getQueryExpr();

Advanced JDO

Castor (1.3.3) 226

These methods will have some additional parameters passed for storing and retrieving data relevant to the
query. Following is a table containing a list of what will be introduced in each coding phase of the project.

Table 4.5. Coding phases

Phase 1

• New parser structure which generates symbol tree

• Parser still supports only limited OQL

• selected field aliases

• whereClause supports or, and, equality, additive,
multiplicative, and unary Operators.

• support for specifying parameter types

• check specified parameter type against system
determined type

• specifying ordered parameters.

• JDBCQueryExpression must support
addCondition(String condition)

Phase 2

• Distinct keyword will be supported in selectExpr

• aggregateExpr and undefinedExpr supported in
projection (Select statement)

• isDefined, isUndefined in whereClause

• inExpr in whereClause

• type checking/conversion in bind()

• fields and accessors in the projection. Mapping
mechanism may need some additional features.

• SQL functions in the projection

• order by

Phase 3

• fields and accessors in whereClause

• SQL functions in the where clause

Phase 4

• sub queries

• exists()

• compositePredicate

Advanced JDO

Castor (1.3.3) 227

• quantifierExpr's: for all and exists

• group by

• having

Phase 5:

• expr as top level symbol

• queries selecting multiple fields or as comma
separated list or *

4.2.10. Examples

Please find below various examples of OQL queries using the Java class files as outlined below.

4.2.10.1. Java class files

The following fragment shows the Java class declaration for the Product class:

package myapp;

public class Product
{

private int _id;

private String _name;

private float _price;

private ProductGroup _group;

public int getId() { ... }
public void setId(int anId) { ... }

public String getName() { ... }
public void setName(String aName) { ... }

public float getPrice() { ... }
public void setPrice(float aPrice) { ... }

public ProductGroup getProductGroup() { ... }
public void setProductGroup(ProductGroup aProductGroup) { ... }

}

The following fragment shows the Java class declaration for the ProductGroup class:

public class ProductGroup
{

private int _id;

private String _name;

public int getId() { ... }
public void setId(int id) { ... }

public String getName() { ... }
public void setName(String name) { ... }

Advanced JDO

Castor (1.3.3) 228

}

4.2.10.2. Limit Clause

On a selected number of RDBMS, Castor JDO now supports the use of LIMIT/OFFSET clauses.

As per this release, the following RDBMS have full/partial support for this feature.

Table 4.6. Limit support

RDBMS LIMIT OFFSET

postgreSQL Yes Yes

mySQL Yes Yes

Oracle - 1)2) Yes Yes

HSQL Yes Yes

MS SQL Yes -

DB2 Yes -

1) Oracle has full support for LIMIT/OFFSET clauses for release 8.1.6 and later.

2) For the LIMIT/OFFSET clauses to work properly the OQL query is required to include a ORDER BY
clause.

The following code fragment shows an OQL query that uses the LIMIT keyword to select the first 10
ProductGroup instances.

query = db.getOQLQuery("select p from ProductGroup as p LIMIT $1");
query.bind(10);

Below is the same OQL query again, restricting the number of ProductGroup instances returned to 10, though
this time it is specified that the ProductGroup instances 11 to 20 should be returned.

query = db.getOQLQuery ("select p from ProductGroup as p LIMIT $1 OFFSET $2");
query.bind(10);

In the case a RDBMS does not support LIMIT/OFFSET clauses, a SyntaxNotSupportedException will be
thrown.

4.3. Transaction And Locking Modes
Assaf Arkin <arkin@exoffice.com>

4.3.1. The JDO Model

Advanced JDO

Castor (1.3.3) 229

In order to understand how the JDO transaction model affects applications performance and transactional
integrity, you must first understand the semantics of the Java Data Objects. Java Data Objects are objects
loaded from and stored to the database, but are disassociated from the database itself. That is, once an object
has been loaded into memory, changes to the object in memory are not reflect in the database until the
transaction commits.

The following table shows a sample code and the state of the JDO object and the relevant database field:

Table 4.7. JDO objects

Code Object value Record value

results = oql.execute(); N/A X

obj = results.next(); X X

obj.setValue(Y); Y X

db.commit(); Y Y

Concurrency conflicts do not occur when an object is changed in memory, but rather when the transaction
commits and changes are saved back to the database. No changes are saved if the transaction rolls back.

Conflicts could occur if two threads attempted to modify the same object, or the same thread receives two
objects associated with the same database record and performs different changes to each object. Castor solves
these issues through a transaction-object-identity association.

When the same transaction attempts to query the same database record twice, (e.g. as the result of two different
queries) the same object is returned, assuring that different changes will be synchronized through the same
object.

When two transactions attempt to query the same database record, each transaction receives a different object
mapping to the same record, assuring that changes done in one transaction are not visible to the other
transactions. Changes should only become visible when the transaction commits and all its changes are made
durable.

This approach places the responsibility of synchronization and deadlock detection on the Castor persistence
engine, easing the life of the developer.

4.3.2. Locking Modes

Concurrent access requires use of locking to synchronize two transactions attempting to work with the same
object. The locking mechanism has to take into account several possible use of objects, as well as help
minimize database access through caching and is-modified checking.

Locking modes are declared in the class element of the XML mapping on a per class basis.

4.3.2.1. Access mode: Shared

The shared mode is the default for all objects, unless otherwise specified in the mapping file. Shared mode
allows two transactions to read the same record at the same time. Each transaction will get it's own view of the
record as a separate object, to prevent in-memory changes from conflicting with each other. However, the
values loaded from the database are the same for both transactions.

Advanced JDO

Castor (1.3.3) 230

When transactions query different objects or query the same objects but for read-only purposes, shared access
provides the most efficient means of access in terms of performance, utilizing record caching and eliminating
lock contention. For example, when each transaction retrieves a different Customer record and all transactions
retrieved the same set of Department records but hardly ever change them, both Customer and Department
should be declared as having a shared lock.

However, when two transactions attempt to access the same object, modify it, and commit the changes, a
concurrency conflict will occur. Some concurrency conflicts can lead to one of the transactions aborting. For
example, if two transactions happen to load the same Account object with a balance of X, one adds 50 and the
other adds 60, if both were allowed to commit the changes the new account balance will be either X+50 or
X+60, but not X+110.

In the above case either exclusive or db-locked modes should be used to reduce potential conflicts. However
exclusive and db-locked modes may cause the application to perform slower due to lock contention and should
not be used as the general case. In rare cases conflicts may occur where shared locks are the preferred choice,
e.g. when two transactions attempt to modify the same Department object, or somehow get hold of the same
Customer records.

Castor detects such conflicts as they occur and uses two mechanisms to deal with them: write locks and
deadlock detection. When a transaction commits Castor first tries to determine whether the object has been
modified from it's known state (i.e. during query). If the object has not been modified, Castor will not attempt
to store the object to the database. If the object has been modified, Castor acquires a write lock on the object
preventing other transactions from accessing the object until the current transaction completes storing all
changes to the database. A write lock prevents other transactions from acquiring either a write or read lock,
preventing them from accidentally loading a dirty image of the object.

If the second transaction has a read lock on the object, the current transaction will block until the second
transaction releases the lock, either by rolling back or by not modifying its object. If the other transaction
modifies the object and attempts to store it, a deadlock occurs. If both transactions have a read lock, both
require a write lock in order to proceed and neither can proceed until the other terminates.

Castor detects such deadlock occurences and causes the second transaction to rollback, allowing the first
transaction to commit properly. Such conflicts do not happen often, but when they happen some transactions
will fail. The application developer should either be aware of the possibility of failing, or choose to use a more
severe lock type.

Conflicts occur not just from other Castor transactions, but also from direct database access. Consider another
application modifying the exact same record through direct JDBC access, or a remote server connecting to the
same database. To detect such conflicts Castor uses a dirty checking mechanism.

When an object is about to be stored, Castor compares the current values in the database records with those
known when the object was originally loaded from the database. Any changes are regarded as dirty fields and
cause the transaction to rollback with the proper error message.

Not all fields are necessarily sensitive to dirty checking. The balance in a bank account is a sensitive field, but
the date of the last transaction might not be. Since the date does not depend on the original value of the account,
but on the last modification to it, dirty checking can be avoided.

A field marked with dirty="ignore" will not take part in dirty checking. Furthermore, modifications to such a
field will not require a write lock on the object, further improving throughput. Marking fields as non-dirty
should be done with extreme care.

4.3.2.2. Access mode: Exclusive

Advanced JDO

Castor (1.3.3) 231

The exclusive mode assures that no two transactions can use the same record at the same time. Exclusive mode
works by acquiring a write lock in memory and synchronizing transactions through a lock mechanism with
configured timeout.

Using in-memory locks, exclusive access provides some transaction synchronization that is efficient in terms of
performance and increases the chance of a commit being successful. It does not, however, guarantee commit.
Since the lock is acquired by Castor, it can be used to synchronize Castor access, but other forms of direct
database access may still modify the database record.

When a transaction obtains an object that was specified as exclusive access in the mapping file or when
performing a query, Castor will always obtain a write lock on that object. The write lock will prevent a second
transaction from being able to access the object either for read or write, until the current transaction commits. If
the object is already being accessed by another transaction, the current transaction will block until the other
transaction commits and release the lock.

It is possible to upgrade from a shared to an exclusive lock by calling the
org.exolab.castor.jdo.Database.lock(java.lang.Object) method. This method can be used with shared
objects when the application wants to assure that other transactions will be blocked and changes can be made to
the current object.

Because direct database access can modify the same record as represented by an exclusive locked object,
Castor uses dirty checking when updating the database. Dirty checking does not have a severe affect on
performance, and can be disabled by marking all the fields of the object with dirty="ignore".

To reduce the possibility of dirty reads, Castor will always synchronize exclusive locked objects with the
database at the beginning of a transaction. That is, when an object is loaded the first time in a transaction with
an exclusive lock, Castor will retrieve a fresh copy of the object from the database. Castor will not, however,
refresh the object if the lock is upgraded in the middle of a transaction using the lock method.

Exclusive mode does cause lock contention and can have an affect on application performance when multiple
transactions attempt to access the same record. However, when used smartly with on a small set of objects it
can help reduce the possibility of concurrency conflicts. It can also be used to force an object to be loaded from
the database and the cache refreshed.

4.3.2.3. Access mode: Database Locked

The locked mode performs optimistic locking using the underlying database engine to assure that only one
transaction has access to the record. In addition to acquiring a write lock in memory, Castor performs a query
with a special SQL construct (FOR UPDATE in Oracle, HOLDLOCK in Sybase) to guarantee access by one
transaction.

In the event that the same database record will be accessed directly through JDBC, stored procedure, or a
second machine using Castor, the only way to achieve object locking is through the database layer. However,
such write locks should be cooperative, that is, other forms of database access should attempt to use the same
locking mechanism.

In some isolation levels, when Castor acquires a write lock on the database it will prevent other applications
from accessing the same record until the Castor transaction commits. However, certain isolation levels allow
other applications to obtain a dirty image of the record.

Write locks on the database have a severe impact on application performance. They incur overhead in the
database manager, and increase lock contention. It is recommended to use database locks with care, pay extra
attention to the isolation level being used, and follow good practices recommended by the database vendor with
regards to such locks.

Advanced JDO

Castor (1.3.3) 232

In the future long transaction will be supported. Long transactions rely on the dirty checking mechanism and
only hold connections open for as long as they are required for queries. Long transactions cannot be used with
database locking.

Locked mode must be specified for the object in the mapping file or when conducting the query. It is not
possible to upgrade to a locked lock in the middle of a transaction.

Objects loaded in this mode are always synchronized with the database, that is, they will never be obtained
from the cache and always re-loaded for each new transaction.

4.3.2.4. Read-only Queries

When a query is performed in read-only mode or no mode is specified and the object is marked as read-only in
the database, Castor will return a transient object. The returned object will not be locked and will not participate
in the transaction commit/rollback.

When the same object is queried twice in a transaction as read-only, Castor will return two separate objects,
allowing the caller to modify one object without altering the other. Castor will utilize the cache and only
perform one load from the database to the cache.

Read-only access is recommended only when the object is intentionally queried as read-only and changes to the
object should not be reflected in the database. If the object will not be modified, or modifications will be stored
in the database, it is recommended to use the shared mode. Shared mode allows the same object to be returned
twice in the same transaction.

4.3.3. Visibility of Changes

The visibility of changes occuring in one transaction to other transactions depends upon the transaction
isolation level specified for the database connection. Whether or not the changes are visible in the current
transaction depends upon the operation being done.

There are four types of changes, the following table summarizes the affect of each change in one transaction on
other queries in that transaction as well as other transactions.

Table 4.8. Changes

Type of change Same transaction Other transaction

Create new object New object is visible and will be
returned from a query

New object might be visible,
depending on isolation level, but
access is blocked until the first
transaction completes

Delete existing object Object is no longer visible and will
not be returned from a query

Object might not be visible,
depending on isolation level, but
access is blocked until the first
transaction completes

setXXX() Change is visible in object itself Change is not visible, object is
accessible depending on lock

update() Change is visible in object itself Change might be visible,
depending on isolation level,
object might be accessible

Advanced JDO

Castor (1.3.3) 233

Type of change Same transaction Other transaction

depending on lock

4.4. Castor Persistence Architecture
Assaf Arkin <arkin@intalio.com>

4.4.1. Layered Achitecture

The Castor persistence engine is based on a layer architecture allowing different APIs to be plugged on top of
the system, and different persistence engines to be combined in a single environment.

At the top level are the application level APIs. These are industry standard APIs that allow an application to be
ported in and to other environments. These APIs consist of interfaces as well as semantics that make them
suitable for a particular type of applications.

At the medium level is the Castor persistence mechanism. The persistence mechanism exposes itself to the
application through the application level APIs. These typically have a one to one mapping with the persistence
mechanism API. The persistence mechanism takes care of object caching and rollback, locking and deadlock
detection, transactional integrity, and two phase commit.

At the bottom level are the Castor service providers. SPIs provide the persistence and query support into a
variety of persistence mechanism. This version of Castor is bundled with an SQL 92 and LDAP persistence
SPIs. Additional SPIs can be added, for example, alternative engines streamlined for Oracle, Sybase, DB2 and
other databases.

This document will describe the persistence mechanism API and SPI to allow for those interested in adding
new top level APIs or service providers.

4.4.2. Persistence API

The persistence mechanism is responsible for object caching and rollback, locking and deadlock detection,
transaction integrity and two phase commit. All data access goes through the persistence mechanism. All
operations are performed in the context of a transaction, even if the underlying SPI does not support
transactions (e.g. LDAP).

The persistence API is defined in the package org.exolab.castor.persist. The persistence mechanism implements
the org.exolab.castor.persist.PersistenceEngine interface, which allows objects to be loaded, created, deleted
and locked in the context of a transaction. The actual implementation is obtained from
org.exolab.castor.persist.PersistenceEngineFactory.

All operations are performed through the context of a transaction. A transaction is required in order to properly
manage locking and caching, and to automatically commit or rollback objects at transaction termination
(write-at-commit). Persistence operations are performed through the
org.exolab.castor.persist.TransactionContext interface.

The actual implementation of a transaction context is specific to each application API and set of SPIs. One is
created from an org.exolab.castor.persist.XAResourceSource which abstracts the data source for the
purpose of connection pooling and XA transaction enlistment. A default implementation of XAResource is
available from org.exolab.castor.persist.XAResourceImpl.

Advanced JDO

Castor (1.3.3) 234

4.4.2.1. Transactions

Every persistence operation is performed within the context of a transaction. This allows changes to objects to
be saved when the transaction commits and to be rolled back when the transaction aborts. Using a transactional
API relieves the application developer from worrying about the commit/rollback phase. In addition it allows
distributed transactions to be managed by a transactional environment, such as an EJB server.

Each time an object is retrieved or created the operation is performed in the context of a transaction and the
object is recorded with the transaction and locked. When the transaction completes, the modified object is
persisted automatically. If not all objects can be persisted, the transaction rolls back. The transaction context
implements full two phase commit.

Each transaction sees it's own view of the objects it retrieves from persistent storage. Until the transaction
commit, these changes are viewable only within that transaction. If the transaction rolled back, the objects are
automatically reverted to their state in persistent storage.

The transaction context (org.exolab.castor.persist.TransactionContext) is the only mechanism by which
the top level APIs can interact with the persistence engine. A new transaction must be opened in order to
perform any operation.

A transaction context is not created directly, but through a derived class that implements the proper mechanism
for obtaining a new connection, committing and rolling back the connection. Note that commit and rollback
operations are only required in a non-JTA environment. When running inside a JTA environment (e.g. an EJB
server), the container is responsible to commit/rollback the underlying connection.

Application level APIs implement data sources that can be enlisted directly with the transaction monitor
through the JTA XAResource interface. A data source can be implemented using
org.exolab.castor.persist.XAResourceSource which serves as a factory for new transaction contexts and
org.exolab.castor.persist.XAResourceImpl which provides an XAResource implementation.

4.4.2.2. OIDs and Locks

Each object participating in a transaction is associated with an object identifier, or OID
(org.exolab.castor.persist.OID). The OID identifies the object through its type and identity value. The
identity object must be unique across all OIDs for the same object type in the same persistence engine.

Each object is also associated with a lock (org.exolab.castor.persist.ObjectLock). An object lock
supports read and write locks with deadlock detection. Any number of transactions may acquire a read lock on
the object. Read lock allows the transaction to retrieve the object, but not to delete or store it. Prior to deleting
or storing the object, the transaction must acquire a write lock. Only one transaction may acquire a write lock,
and a write lock will not be granted if there is any read lock on the object.

If an object is loaded read-only, a read lock is acquired at the begin of the load operation and realeased when
the load is finished. Someone now could ask why do you acquire a read lock at all if it only lasts during the
load operation. For an explanation we have to take a look on what happens if an object is loaded. Loading one
object from database may cause castor to load a whole tree of objects with relations to each other. In the
background castor may performs various queries to load all related objects. For this object tree to be consistent
and reflect the persistent state of all the objects in the database at one point in time we need to lock all objects
involved in all load operations to prevent any involved object to be write locked and changed by another
transaction. If the load operation is finished these read locks are not required anymore. On the other hand, read
locks are acquired to prevent an object already locked in the write mode from getting the read lock.

Write locks are acquired at the begin of the load operation similar then read locks. But in contrast to read locks,

Advanced JDO

Castor (1.3.3) 235

write locks are hold until the transaction is commited or rolled back. Holding the write lock until the end of the
transaction is required as the changes to the objects, that could happen anytime between begin and end of the
transaction, are only persisted if the transaction successfully commits.

If a transaction requires a read lock on an object which is write locked by another transaction, or requires a
write lock on an object which is read or write locked by another transaction, the transaction will block until the
lock is released, or the lock timeout has elapsed. The lock timeout is a property of the transaction and is
specified in seconds. A org.exolab.castor.persist.LockNotGrantedException is thrown if the lock could
not be acquired within the specified timeout.

This locking mechanism can lead to the possibility of a deadlock. The object lock mechanism provides
automatic deadlock detection by tracking blocked transactions, without depending on a lock wait to timeout.

Write locks and exclusive locks are always delegated down to the persistence storage. In a distributed
environment the database server itself provides the distributed locking mechanism. This approach assures
proper concurrency control in a distributed environments where multiple application servers access the same
database server.

4.4.2.3. Cache Engine

The concurrency engine includes a layer that acts as a cache engine. This layer is particularly useful for
implementing optimistic locking and reducing synchronization with the database layer. It is also used to
perform dirty checks and object rollback. The cache engine is implemented in
org.exolab.castor.persist.CacheEngine and exposed to the application through the
org.exolab.castor.persist.PersistenceEngine.

When an object is retrieved from persistent storage it is placed in the cache engine. Subsequent requests to
retrieve the same object will return the cached copy (with the exception of pessimistic locking, more below).
When the transaction commits, the cached copy will be updated with the modified object. When the transaction
rolls back, the object will be reverted to its previous state from the cache engine.

In the event of any error or doubt, the cached copy will be dumped from the cache engine. The least recently
used objects will be cleared from the cache periodically.

The cache engine is associated with a single persistence mechanism, e.g. a database source, and LDAP
directory. Proper configuration is the only way to assure that all access to persistent storage goes through the
same cache engine.

4.4.2.4. Pessimistic/Optimistic Locking

The concurrency engine works in two locking modes, based on the type of access requested by the application
(typically through the API). Pessimistic locking are used in read-write access mode, optimistic locking are used
in exclusive access mode.

In optimistic locking mode it is assumed that concurrent access to the same object is rare, or that objects are
seldom modified. Therefore objects are retrieved with a read lock and are cached in memory across
transactions.

When an object is retrieved for read/write access, if a copy of the object exists in the cache, that copy will be
used. A read lock will be acquired in the cache engine, preventing other Castor transactions from deleting or
modifying the object. However, no lock is acquired in persistent storage, allowing other applications to delete
or modify the object while the Castor transaction is in progress.

To prevent inconsistency, Castor will perform dirty checking prior to storing the object, detecting whether the

Advanced JDO

Castor (1.3.3) 236

object has been modified in persistent storage. If the object has been modified outside the transaction, the
transaction will rollback. The application must be ready for that possibility, or resort to using pessimistic
locking.

In pessimistic locking mode it is assumed that concurrent access to the same object is the general case and that
objects are often modified. Therefore objects are retrieved with a write lock and are always synchronized
against the persistence storage. When talking to a database server, a request to load an object in exclusive mode
will always load the object (unless already loaded in the same transaction) using a SELECT .. FOR UPDATE

which assures no other application can change the object through direct access to the database server.

The locking mode is a property of the chosen access mode. The two access modes as well as read-only access
can be combined in a single transaction, as a property of the query or object lookup. However, it is not possible
to combine access modes for the same object, in certain cases this will lead to a conflict.

The pessimistic locking mode is not supported in LDAP and similar non-transactional servers. LDAP does not
provide a mechanism to lock records and prevent concurrent access while they are being used in a transaction.
Although all Castor access to the LDAP server is properly synchronized, it is possible that an external
application will modify or delete a record while that record is being used in a Castor transaction.

4.4.2.5. Relations

TBD

4.4.2.6. QueryResults

TBD

4.4.3. Service Providers (SPI)

Castor supports a service provider architecture that allows different persistence storage providers to be plugged
in. The default implementation includes an SQL 92 provider and an and an LDAP provider. Additional
providers will be available optimized for a particular database server or other storage mechanisms.

The service provider is defined through two interfaces, org.exolab.castor.persist.spi.Persistence and
org.exolab.castor.persist.spi.PersistenceQuery. The first provides creation, deletion, update and lock services,
the second is used to process queries and result sets. Service providers are obtained through the
org.exolab.castor.persist.spi.PersistenceFactory interface.

4.4.3.1. Persistence

The interface org.exolab.castor.persist.spi.Persistence defines the contract between the persistence mechanism
and a persistence service provider. Each persistence storage (i.e. database server, directory server) is associated
with a single persistence engine, which in turn contains a number of service providers, one per object type.
Service providers are acquired through a org.exolab.castor.persist.spi.PersistenceFactory interface, which is
asked by each persistence engine to return implementations for all the object types supported by that
persistence engine.

The object's identity is an object that unique identifies the object within persistent storage. Typically this would
be the primary key on a table, or an RDN for LDAP. The identity object may be a simple type (e.g. integer,
string) or a complex type.

The service provider may support the stamp mechanism for efficiently tracking dirty objects. The stamp
mechanism is a unique identifier of the persistent object that changes when the object is modified in persistent

Advanced JDO

Castor (1.3.3) 237

storage. For example, a RAWID in Oracle or TIMESTAMP in Sybase. If a stamp is return by certain
operations it will be stored with the object's OID and passed along to the store method.

The create method is called to create a new object in persistent storage. This method is called when the created
object's identity is known. If the object's identity is not know when the object is made persistent, this method
will be called only when the transaction commits. This method must check for duplicate identity with an
already persistent object, create the object in persistent storage, such that successful completion of the
transaction will result in durable storage, and retain a write lock on that object for the duration of the
transaction.

The load method is called to load an object from persistent storage. An object is passed with the requested
identity. If the object is found in persistent storage, it's values should be copied into the object passed as
argument. If the lock flag is set, this method must create a write lock on the object at the same time it loads it.

The load method is called in two cases, when an object is first loaded or when an object is synchronized with
the database (reloaded) in exclusive access mode. In the second case this method will be called with an object
that is already set with values that are not considered valued, and must reset these values.

The store method is called to store an object into persistent storage. The store method is called for an object
that was loaded and modified during a transaction when the transaction commits, as well as for an object that
was created during the transaction. This method must update the object in persistent storage and retain a write
lock on that object.

This method might be given two views of an object, one that is being saved and one that was originally loaded.
If the original view is provided as well, this method should attempt to perform dirty check prior to storing the
object. Dirty check entails a comparison of the original object against the copy in persistent storage, to
determine whether the object has changed in persistent storage since it was originally loaded. The class
descriptor will indicate whether the object is interested in dirty checking and which of its fields should be
checked.

The delete method is called to delete an object from persistent storage. The delete method is called when the
transaction commits and expects the object to deleted, if it exists. This method is not called when the
transaction rolls back, objects created during the transaction with the create method are automatically rolled
back by the persistent storage mechanism.

The writeLock method is called to obtain a write lock on an object for which only a read lock was previously
obtained. The changeIdentity method is called to change the identity of the object after it has been stored with
the old identity.

4.4.3.2. PersistenceQuery

The interface org.exolab.castor.persist.spi.PersistenceQuery defines the contract between the persistence engine
and a query mechanism.

4.4.4. Enterprise JavaBeans CMP

TBD

4.5. Castor JDO Key Generator Support

4.5.1. Introduction

Advanced JDO

Castor (1.3.3) 238

The key generator gives a possibility to generate identity field values automatically. During create the value of
the identity field is set to the value obtained from the key generator. Different algorithms may be used here,
both generic and specific for database server.

The key generator for the given class is set in the mapping specification file (mapping.xml), in the
key-generator attribute of the class element, for example:

<class name="myapp.ProductGroup"
identity="id" key-generator="MAX">

<field name="id">
</field>

</class>

The following key generator names are supported in Castor 1.0:

Table 4.9. Supported key generator names

MAX "MAX(pk) + 1" generic algorithm

HIGH-LOW HIGH-LOW generic algorithm

UUID UUID generic algorithm

IDENTITY Supports autoincrement identity fields in Sybase
ASE/ASA, MS SQL Server, MySQL and Hypersonic
SQL

SEQUENCE Supports SEQUENCEs in Oracle, PostgreSQL,
Interbase and SAP DB

Some of these algorithms have parameters, which can be specified in the key-generator element of the
mapping specification file, for example:

<key-generator name="HIGH-LOW">
<param name="table" value="SEQ"/>
<param name="key-column" value="SEQ_TableName"/>
<param name="value-column" value="SEQ_MaxPKValue"/>
<param name="grab-size" value="1000"/>

</key-generator>

<class name="myapp.ProductGroup"
identity="id" key-generator="HIGH-LOW">

<field name="id">
</field>

</class>

It is possible to create several key generators with the same algorithms but different parameters. In this case
you have to specify the alias attribute in the key-generator element, for example:

<key-generator name="SEQUENCE" alias="A">
<param name="sequence" value="a_seq"/>

</key-generator>

<key-generator name="SEQUENCE" alias="RETURNING">
<param name="sequence" value="b_seq"/>
<param name="returning" value="true"/>

</key-generator>

Advanced JDO

Castor (1.3.3) 239

<class name="myapp.ProductGroup"
identity="id" key-generator="RETURNING">

<field name="id">
</field>

</class>

Below all supported key generators a described in details.

4.5.2. MAX key generator

MAX key generator fetches the maximum value of the primary key and lock the record having this value until
the end of transaction. Then the generated value is set to (MAX + 1). Due to the lock concurrent transactions
which perform insert to the same table using the same key generator algorithm will wait until the end of the
transaction and then will fetch new MAX value. Thus, duplicate key exception is almost impossible (see
below). Note, that it is still possible to perform multiple inserts during the same transaction.

There is one "singular" case of this algorithm: the case when the table is empty. In this case there is nothing to
lock, so duplicate key exception is possible. The generated value in this case is 1.

This algorithm has no parameters. Primary key must have type integer, bigint or numeric.

4.5.3. HIGH-LOW key generator

This key generator uses one of the variants of the generic HIGH-LOW algorithm. It is needed a special
auxiliary table ("sequence table") which has the unique column which contains table names (of the type char or
varchar) and the column which is used to reserve values of the primary keys (of the type integer, bigint or
numeric). The key generator seeks for the given table name, reads the last reserved value and increases it by
some number N, which is called "grab size". Then the lock on the auxiliary table is released, so that concurrent
transactions can perform insert to the same table. The key generator generates the first value from the grabbed
interval. During the next (N - 1) invocations it generates the other grabbed values without database access, and
then grabs the next portion. Note, that the auxiliary table must be in the same database as the table for which
key is generated. So, if you work with multiple databases, you must have one auxiliary table in each database.

If the grab size is set to 1, the key generator each time stores the true maximum value of the primary key to the
auxiliary table. In this case the HIGH-LOW key generator is basically equivalent to the MAX key generator.
On you want to have LOW part of the key consisting of 3 decimal digits, set the grab size to 1000. If you want
to have 2 LOW bytes in the key, set the grab size to 65536. When you increase the grab size, the speed of key
generation also increases because the average number of SQL commands that are needed to generate one key is
(2 / N). But that average number of key values that will be skipped (N / 2) also increases.

The HIGH-LOW key generator has the following parameters:

Table 4.10. parameters of the HIGH-LOW key generator

table The name of the special
sequencetable.

Mandatory

key-column The name of the column which
contains table names

Mandatory

value-column The name of the column which is
used to reserve primary key values

Mandatory

grab-size The number of new keys the key Optional, default="10"

Advanced JDO

Castor (1.3.3) 240

generator should grab from the
sequence table at a time.

same-connection To use the same Connection for
writing to the sequence table,
values: "true"/"false". This is
needed when working in EJB
environment, though less efficient.

Optional, default="false"

global To generate globally unique keys,
values: "true"/"false".

Optional, default="false"

global-key The name of key, which is used
when globally unique keys are
generated.

Optional, default="<GLOBAL>"

If the parameter global is set to true, the sequence table contains only one row with the value set in parameter
global-key (or "<GLOBAL>" if "global-key was not set") instead of the table name. This row serves for all
tables.

Don't forget to set same-connection="true" if you are working in EJB environment!

Note, that the class HighLowKeyGenerator is not final, so you can extend it in order to implement other variants
of HIGH-LOW algorithm (for example, HIGH/MID/LOW or char key values).

4.5.4. UUID key generator

This key generator generates global unique primary keys. The generated key is a combination of the IP address,
the current time in milliseconds since 1970 and a static counter. The complete key consists of a 30 character
fixed length string.

This algorithm has no parameters. Primary key must have type char, varchar or longvarchar.

4.5.5. IDENTITY key generator

IDENTITY key generator can be used only with autoincrement primary key columns (identities) with Sybase
ASE/ASA, MS SQL Server, MySQL and Hypersonic SQL.

After the insert the key generator selects system variable @@identity which contains the last identity value for
the current database connection.

In the case of MySQL and Hypersonic SQL the system functions LAST_INSERT_ID() and IDENTITY() are
called, respectively.

This algorithm has no parameters.

4.5.6. SEQUENCE key generator

The SEQUENCE key generator type is supported in conjunction with the following DBMS: Derby, Interbase,
Oracle, PostgreSQL, and SAP DB.

It generates keys using database sequence objects.

Advanced JDO

Castor (1.3.3) 241

The key generator has the following parameters:

Table 4.11. parameters of the SEQUENCE key generator

sequence The name of the sequence Optional, default="{0}_seq"

returning RETURNING mode for Oracle8i,
values: "true"/"false"

Optional, default="false"

increment Increment for Interbase Optional, default="1"

trigger Assume that there is a trigger that
already generates key. Values:
"true"/"false"

Optional, default="false"

Usually one sequence is used for one table, so in general you have to define one key generator per table.

But if you use some naming pattern for sequences, you can use one key generator for all tables.

For example, if you always obtain sequence name by adding "_seq" to the name of the correspondent table, you
can set "sequence" parameter of the key generator to "{0}_seq" (the default value).

In this case the key generator will use sequence "a_seq" for table "a", "b_seq" for table "b", etc. Castor also
allows for inserting the primary key into the sequence name as well. This is accomplished by including the {1}
tag into the "sequence" parameter. Example: "{0}_{1}_seq"

Actually the SEQUENCE key generator is "4 in 1". With PostgreSQL it performs "SELECT
nextval(sequenceName)" before INSERT and produces identity value that is then used in INSERT. Similarly,
with Interbase it performs "select gen_id(sequenceName, increment) from rdb$database" before INSERT.

With Oracle by default (returning=false) and with SAP DB it transforms the Castor-generated INSERT
statement into the form "INSERT INTO tableName (pkName,...) VALUES (sequenceName.nextval,...)" and
after INSERT it performs "SELECT seqName.currval FROM tableName" to obtain the identity value. With
Oracle8i it is possible to use more efficient RETURNING mode: to the above INSERT statement is appened
"RETURNING primKeyName INTO ?" and the identity value is fetched by Castor during INSERT, so that
only one SQL query is needed.

In case when your table has an on_Insert trigger which already generates values for your key, like the following
Oracle example:

create or replace trigger "trigger_name"
before insert on "table_name" for each row
begin

select "seq_name".nextval into :new."pk_name" from dual;
end;

you may set the "trigger" parameter to "true". This will prevent the "Sequence_name".nexval from being pulled
twice (first time in the insert statement (see above), then in the trigger). Also usefull in combination with the
"returning" parameter set to "true" for Oracle (in this case you may not specify the sequence name).

4.6. Castor JDO Long Transactions Support

Advanced JDO

Castor (1.3.3) 242

4.6.1. Introduction

The usual Castor transactions are called here short transactions: an object is read, modified and written within
the bounds of one transaction. Long transactions consist of two Castor transactions: an object is read in the first
and written in the second. Between them the object is sent "outwards" and modified there. For example, the
object may be send to a client application and dispayed to a user, or it may be sent to a servlet engine and is
displayed on a web page. After that the modified object returns back and is written to the database in the second
transaction. At this point the object is usually not the same physical instance as one that was read in the first
transaction. The example code for writing the object in the second Castor transaction follows:

// a customer go to a webpage to review her personal information.
// The servlet then call this server side function: getCustomerInfo
public CustomerInfo getCustomerInfo(Integer customNum) {

// in most case, users simply review information and
// make no change. Even if they make changes, it often
// takes time for them to decide. We don't want to
// lock the database row, so commit right after we load.
db.begin();
CustomerInfo info = (CustomerInfo)

db.load(CustomerInfo.class, customNum);

// we also want to keep track of customers patterns
// well...it helps us provide better service.
info.setLastVisit(today);
db.commit();
return info;

}

// Three days passed, the indecisive customer finally agrees to
// marry Joe. She changes her last name in the webpage and
// clicked the "Submit" button on the webpage.

// The servlet then calls updateCustomerInfo to update the
// last name for the indecisive customer.
public void updateCustomerInfo(CustomerInfo info) {

db.begin();
db.update(info);
db.commit();

}

Note, that it is natural to read the object in the first transaction in the read-only mode.

Since the time interval between the first and the second transaction is relatively big, it is desirable to perform
dirty checking, i.e. to check that the object has not been modified in the database during the long transaction.
For that the object must hold a timestamp: it is set by Castor during the first Castor transaction and is checked
during the second one. In order to enable the dirty checking for long transactions, the object should implement
the interface org.exolab.castor.jdo.TimeStampable having two methods: long jdoGetTimeStamp() and void

jdoSetTimeStamp(long timeStamp)

4.6.2. Bounded dirty checking

The advantage of the bounded dirty checking is that it doesn't require any changes to the database schema. It
uses the Castor cache to store object timestamps. The disadvantage of this algorithm is that it is bounded by a
lifetime of the cached copy of the object. After the cached copy has been purged, db.update() causes
ObjectModifiedException.

Thus, parameters of the cache define dirty checking capabilities. The cache-type attribute is part of the <class>
element in the XML mapping. Consider the existing cache types:

Advanced JDO

Castor (1.3.3) 243

• none - the bounded dirty checking is impossible

• count-limited - the count limit for the cache is a count limit for the objects of this class that can participate in
long and short transactions simultaneously.

• time-limited - the time limit for the cache is a time limit for the long transaction.

• unlimited - the bounded dirty checking gives correct results while the cache exists, i.e. until the crash of the
server.

4.6.3. Long transactions that do not depend on cache

For long transactions (detached objects) it was required that the entity has been kept in cache from being loaded
until its update. If the entity was expired from cache before the update an ObjectModifiedException had been
thrown. While this is no problem if all entities of an application can be kept in cache all the time, it is one for
large scale applications with millions of entities.

With release 1.3 we have changed the handling of timestamps. While it is still possible to rely on cache only it
is now also possible to persist the timestamp together with the other properties of the entity. Doing so will
ensure that the timestamp do not change even if the entity got expired from cache from being loaded until it
gets updated. If this happens the entity gets reloaded during update which also loads the previous timestamp.
Having said that it still is possible that an ObjectModifiedException is thrown when another user has changed
the same entity in the meantime.

See an example entity and its mapping below:

public class Entity implements TimeStampable {
private Integer _id;
private String _name;
private long _timeStamp;

public Integer getId() { return _id; }
public void setId(final Integer id) { _id = id; }

public String getName() { return _name; }
public void setName(final String name) { _name = name; }

public long getTimeStamp() { return _timeStamp; }
public void setTimeStamp(final long timeStamp) {

_timeStamp = timeStamp;
}

public long jdoGetTimeStamp() { return _timeStamp; }
public void jdoSetTimeStamp(final long timestamp) {

_timeStamp = timestamp;
}

}

<class name="Entity">
<cache-type type="time-limited" capacity="300"/>
<map-to table="entity"/>
<field name="id" type="integer" identity="true">

<sql name="id" type="integer"/>
</field>
<field name="name" type="string">

<sql name="name" type="char"/>
</field>
<field name="timeStamp" type="long">

<sql name="timestamp" type="numeric" />
</field>

</class>

Advanced JDO

Castor (1.3.3) 244

4.7. Nested Attributes

4.7.1. Introduction

In some cases it is desirable to map a plain sequence of fields in a database record to more complicated
structure of attributes in a Java object, where the target attributes are contained (nested) in other attributes. In
brief, you can specify a path to the target attribute as a name of the field in a configuration file, and Castor is
able to handle such nested attributes. For example:

<field name="address.country.code"...>
<sql name="person_country"/>

</field>

4.7.2. Application types

The first case is an attribute of an application type that is a container for some value of a Java type supported by
Castor. Usually the application type also has some business methods. Examples are: class Balance that contains
a BigDecimal value and has some accounting-specific methods; class CountryCode that contains a String value
and has methods validate(), getDisplayName(), etc.; class Signature that contains a byte[] value and has some
security-specific methods. In order to use such type with Castor you should provide a pair of methods to get/set
the value of the Castor-supported type, e.g. getBigDecimal/setBigDecimal, getCode/setCode,
getBytes/setBytes.

Assume that you have the class Address

public class Address {
private CountryCode _country;
private String _city;
private String _street;

public CountryCode getCountry() {
return _country;

}

public void setCountry(CountryCode country) {
_country = country;

}
...

}

where the class CountryCode is like this

public class CountryCode {
private String _code;
private static String[] _allCodes;
private static String[] _allDisplayNames;

public String getCode() {
return _code;

}

public void setCode(String code) {
_code = code;

}

public void getDisplayName() {
...

}

Advanced JDO

Castor (1.3.3) 245

then write in the configuration file:

<class name="Address"...>
<field name="country.code"...>
<sql name="addr_country"/>

</field>
...

</class>

When reading the object from the database Castor will use

object.getCountry().setCode(value);

to set the nested attribute value. Moreover, if object.getCountry() is null, Castor will create the intermediate
object of the application type:

country = new CountryCode();
country.setCode(value);
object.setCountry(country);

When writing the object to the database Castor will use

value = object.getCountry().getCode();

to get the value of the correspondent database field.

4.7.3. Compound types

The second case is an attribute that is a part of a compound attribute, which contains several database fields.
For example, database fields person_country, person_city, person_street of the table PERSON correspond to
one compound attribute "address" of the class Person:

public class Person {
private String _firstName;
private String _lastName;
private Address _address;

public Address getAddress() {
return _address;

}

public void setAddress(Address address) {
_address = address;

}
...

}

where the class Address is the same as in the previous section. Then write in the configuration file:

<class name="Person"...>
<field name="address.country.code"...>
<sql name="person_country"/>

</field>
<field name="address.city"...>
<sql name="person_city"/>

Advanced JDO

Castor (1.3.3) 246

</field>
<field name="address.street"...>
<sql name="person_street"/>

</field>
...

</class>

Similarly to the previous section, Castor will use a proper sequence of get/set methods to access the nested
attributes and will create the intermediate objects when necessary. Don't forget to provide parameterless
constructors for the container classes.

4.8. Using Pooled Database Connections

4.8.1. News

• 10/22/2004: Added JDBC Datasource configuration for mySQL.

• 9/14/2004: Added section about using Jakarta's DBCP with Castor.

4.8.2. Pooling Agents

There is no mechanism within Castor JDO to provide pooling of JDBC drivers. Rather, Castor JDO relies on
the drivers or external driver wrappers to implement a pooling mechanism. Some drivers, such as Oracle,
provides a pooling mechanism in the driver. For those that do not, there are tools such as Proxool and Jakarta's
DBCP project.

Here, I'll go over the various usage of the PostgreSQL driver with Castor. We start with the most basic
configurations that do not use any pooling, to those with pooling via DBCP. I'll include how to configure the
pooling version of the PostgreSQL JDBC driver ths will be usable with PostgreSQL 7.3 and later, how to setup
a Tomcat JNDI context that Castor can use to get a pooled JDBC connection. Finally, I'll explain how to
configure a BasicDataSource from the DBCP package using the <data-source> element.

4.8.3. Standard Database Connections

A standard jdo-conf.xml entry for using PostgreSQL without pooling looks like this:

<driver class-name="org.postgresql.Driver"
url="jdbc:postgresql://localhost/app">

<param name="user" value="smith"/>
<param name="password" value="secret" />

</driver>

On the other hand, if you wanted to use the PostgresqlDataSource, you would use the data-source tag instead,
and the connection entry would look like this:

<data-source class-name="org.postgresql.PostgresqlDataSource">
<param name="server-name" value="localhost" />
<param name="database-name" value="app" />
<param name="user" value="smith" />
<param name="password" value="secret" />
</data-source>

Advanced JDO

Castor (1.3.3) 247

http://sourceforge.net/projects/proxool/
http://commons.apache.org/dbcp/

(Note that only versions before 7.3 of the PostgreSQL JDBC driver include this class)

4.8.4. Pooling and JDBC DataSources

4.8.4.1. PostgreSQL 7.3 and later

In the 7.3 release of PostgreSQL, they will start providing a pooling mechanism with their driver. The Castor
SVN repository includes a beta version of the driver with this functionality. Here is the 'current' configuration
needed for the upcoming 7.3 release of PostgreSQL. (Unless they change it.) Note that in this pooling
mechanism currently lacks some features of standrd pooling packages such as DBCP, such as timing out idle
connections and removing failed connections from the pool. In this case, we can create the following
data-source entry in the jdo-conf.xml file to provide for our connections with Castor.

<data-source class-name="org.postgresql.jdbc2.optional.PoolingDataSource">
<param name="server-name" value="localhost" />
<param name="database-name" value="app" />
<param name="initial-connections" value="2" />
<param name="max-connections" value="10" />
<param name="user" value="smith" />
<param name="password" value="secret" />
</data-source>

4.8.4.2. Oracle

Here is the configuration needed for using a connection pool with the Oracle JDBC DataSource
implementations.

<data-source class-name="oracle.jdbc.pool.OracleConnectionCacheImpl">
<param name="URL" value="jdbc:oracle:thin:@localhost:1521:TEST" />
<param name="user" value="scott" />
<param name="password" value="tiger" />

</data-source>

4.8.4.3. mySQL

Here is the configuration needed for using a connection pool with the mySQL JDBC DataSource
implementations.

<data-source class-name="com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource">
<param name="server-name" value="localhost" />
<param name="port" value="3306" />
<param name="user" value="scott" />
<param name="password" value="tiger" />
<param name="database-name" value="test" />

</data-source>

4.8.5. Configuring JDBC DataSources in Tomcat to be used with Castor

Finally, I want to show the configuration for using a pooling data-source for Castor which is retrieved from a

Advanced JDO

Castor (1.3.3) 248

JNDI context that Apache fills. The first example is using the PostgreSQL pooling data-source, and the second
is using Castor. The information to gain here is that we did not need to change the jdo-conf.xml file or the
webapp's web.xml file to achieve this.

First, we modify the deployment context for the webapp in Tomcat >= 4.0 for our webapp in the
conf/server.xml directory. (With Tomcat/Catalina releases 4.0 and higher there's more than one way of adding a
<Resource> entry. Please consult with the manuals for more and more detailed information).

We add the following information (using the PostgreSQL JDBC DataSource implementations as introduced
above.):

<Context path="/webapp" docBase="test" debug="10">
<Resource name="jdbc/appDb" auth="Container"

type="org.postgresql.jdbc2.optional.PoolingDataSource"/>
<ResourceParams name="jdbc/appDb">
<parameter>
<name>factory</name>
<value>org.postgresql.jdbc2.optional.PGObjectFactory</value>

</parameter>
<parameter>
<name>dataSourceName</name>
<value>appDb</value>

</parameter>
<parameter>
<name>initialConnections</name>
<value>2</value>

</parameter>
<parameter>
<name>maxConnections</name>
<value>5</value>

</parameter>
<parameter>
<name>databaseName</name>
<value>app</value>

</parameter>
<parameter>
<name>user</name>
<value>smith</value>

</parameter>
<parameter>
<name>password</name>
<value>secret</value>

</parameter>
<parameter>
<name>serverName</name>
<value>localhost</value>

</parameter>
</ResourceParams>

</Context>

Here, we are using the PostgreSQL PGObjectFactory which provides the JNDI server (Tomcat) the ability to
create the correct data source. Now, the web.xml file for the webapp needs to be updated too.

<resource-env-ref>
<description>PostgreSQL pooling check</description>
<resource-env-ref-name>jdbc/appDb</resource-env-ref-name>
<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>

</resource-env-ref>

Note that we are only calling the ref type a DataSource object, not using the PostgreSQL class name. This will
enable us to make changes easily. Now, in the jdo-conf.xml file that Castor uses, we no longer list the driver or

Advanced JDO

Castor (1.3.3) 249

data-source tag, but use the JNDI one, and it is simply this:

<jndi name="java:comp/env/jdbc/appDb"/>

4.8.6. Jakarta Commons DBCP - BasicDataSource

Commons-DBCP provides database connection pooling services, and together with Commons-Pool it is the
default JNDI datasource provider for Tomcat.

With release 1.1 of the Jakarta Commons DBCP component, one of the major new features of the JDBC 3.0
API has (finally) been added to BasicDataSource, support for prepared statement pooling.

To configure Castor for the use of DBCP, please provide the following <data-source> entry in the jdo-conf.xml
file.

<data-source class-name="org.apache.commons.dbcp.BasicDataSource">
<param name="driver-class-name" value="com.mysql.jdbc.Driver" />
<param name="username" value="test" />
<param name="password" value="test" />
<param name="url" value="jdbc:mysql://localhost/test" />
<param name="max-active" value="10" />

</data-source>

4.8.6.1. Prepared statement pooling

As mentioened above, please note that with DBCP 1.1 and later releases, support for prepared statement
pooling has been added to DBCP. As Castor JDO does not implement prepared statement pooling itself, you
will to configure DBCP explicitely to enable this feature.

To configure Castor for the use of DBCP, and to turn prepared statement pooling on, please provide the
following <data-source> entry in the jdo-conf.xml file.

<data-source class-name="org.apache.commons.dbcp.BasicDataSource">
<param name="driver-class-name" value="com.mysql.jdbc.Driver" />
<param name="username" value="test" />
<param name="password" value="test" />
<param name="url" value="jdbc:mysql://localhost/test" />
<param name="max-active" value="10" />
<param name="pool-prepared-statements" value="true" />

</data-source>

There's plenty of information on configuration of BasicDataSource.

4.9. Blobs in PostgreSQL

4.9.1. OID Support

PostgreSQL's blob support has evolved over the years. Today PostgreSQL fields can be of unlimited length.

Advanced JDO

Castor (1.3.3) 250

http://jakarta.apache.org/commons/pool/
http://jakarta.apache.org/commons/dbcp/configuration.html

And there are specific data types for character and binary large objects. The current Castor support for blobs,
however, uses an earlier PostgreSQL blob support. This support places the blob data in the pg_largeobject table
and a object id in the referring table. For most practical purposes using this earlier support does not matter.

Database version and the JDBC driver version matter greatly. To get everything to work I eventually built and
installed PostgreSQL 7.2.2 and used the JDBC driver from this build (i.e. not the one from
http://jdbc.postgresql.org.

Since Castor is using the earlier blob support the JDBC has to be placed in PostgreSQL 7.1 comparability
mode. To do this use the following JDBC URL

jdbc:postgresql://host:port/database?compatible=7.1

Once you have resolved the PostgreSQL version issues Castor works as documented.

4.9.2. OID Example

Here are the details of an example configuration.

Client Windows 2000, Sun Java Standard Edition 1.3.1_03, Castor 0.9.3.21
Server RedHat 7.2, PostgreSQL 7.2.2

The interface I am using is

public interface Document {
String getTitle();
void setTitle(String title);
Date getCreatedOn();
void setCreatedOn(Date createdOn);
String getContentType();
void setContentType(String contentType);
InputStream getContent();
void setContent(InputStream content);

}

and this is implemented by the class DocumentImpl.

The mapping file is

<?xml version="1.0"?>
<mapping>
<class

name="com.ingenta.DocumentImpl"
identity="id"
key-generator="SEQUENCE" >
<description />
<cache-type type="none" />
<map-to table="documents" />
<field name="id" type="integer" >

<sql name="id" type="integer" dirty="check" required="true"/>
</field>
<field name="title" type="string">

<sql name="title" type="longvarchar" dirty="check" />
</field>
<field name="createdOn" type="date">

<sql name="createdon" type="date" dirty="check" />
</field>

Advanced JDO

Castor (1.3.3) 251

http://jdbc.postgresql.org/

<field name="contentType" type="string">
<sql name="contenttype" type="longvarchar" dirty="check" />

</field>
<field name="content" type="stream">

<sql name="content" type="blob" dirty="ignore" />
</field>

</class>
</mapping>

Note that the blob is not dirty checked.

And the SQL is

create table documents (
id serial not null,
title text null,
createdon timestamp null,
contenttype text null,
content oid null,
primary key (id)

);

Castor caches objects between transactions for performance. With a blob however the cached object's
InputStream is not reusable. To workaround this I have told the cache to not cache any objects of this class by
adding to the class mapping, as noted above.

4.10. Castor JDO - Best practice

4.10.1. Introduction

There's many users of Castor JDO out there, who (want to) use Castor JDO in in high-volume applications. To
fine-tune Castor for such environment, it is necessary to understand many of the product features in detail and
to be able to balance their use according to the application needs. Even though many of these features are
detailed in various places, people have frequently been asking for a 'best practise' document, a document that
brings together these technical topics (in one place) and presents them as a set of easy-to-use recipes.

Please be aware that this document is under construction, but still we believe that - even when in its conception
phase - it provides valuable information to users of Castor JDO.

4.10.2. General suggestions

Let's start with some general suggestions that you should have a look at. Please don't feel upset if some are
really primitive but there may be users reading this document that are not aware of them.

1. Switch to version 0.9.9 of Castor as we have fixed some 100+ bugs that may causesome of your problems.

Sidenote: Performance has, generally, improved recently. If you're not seeing performance improvements,
then it's worth spending some time thinking about why.

2. Initialize your JDOManager instance once and reuse it all over your application. Don't reuse the Database
instances. Creating them is inexpensive, and JDBC rules state that one thread <-> one JDBC connection is
the rule. Do not multithread inside of a Database instance; as a corrolary, do not multithread on a single

Advanced JDO

Castor (1.3.3) 252

JDBC connection.

3. Use a Datasource instead of a Driver configuration as they enable connection pooling which gives you a
great performance improvement.

We highly suggest DBCP, here, with the beneficial use of prepared statement caching.

Should you be running on a system where read performance is critical, feel free to take the SQL code
generated by castor, and dumped to logs during the DB mapping load in debug output, and turn those into
stored procedures that you then invoke via SQL CALL to perform those loads; however, I find personally
that stored procedures would be a minimal improvement over the DBCP prepared statement cache; your
mileage may vary. db.load() has performance benefits that are worth keeping, IMO, and the pleasure of
having pretty stored procedures in your database is far outweighed by the nightmare of change management.

Have a look at the HTML docs for Jakarta DBCP, which has details about how to use and configure DBCP
with Castor and Tomcat.

Note

'prepared statement caches' refer to the fact that DBCP is a JDBC 3.0-compliant product, and as
such has to support caching of prepared statements. This basically allows the JDBC driver to
maintain a pool of prepared statements across all connections, a feature that has been added to
the JDBC specification with release 3.0 only.

DBCP setup is generally outside of the scope of this list, but basically, here's my two cent description:

• Use tomcat 5.5, because mucking about in server.xml sucks. For those of you working with Tomcat 4.1.x,
there's no need to muck about in server.xml, either. Afaik, a web app can be deployed using a web app
descriptor copied into $TOMCAT_HOME/webapps, which is the place top define anything specific to a
web app context. Details can vary, of course.

• Create a META-INF directory in your WAR deploy scripts, and put a context.xml in it.

• In that context.xml, describe all of the things you want to be made available via JNDI to your application.
These include things like UserTransaction and TransactionManager (for those of us using JOTM), all your
database connection pools as datasources, etc. You can also add your JDO factory here, should you
choose to do so.

• Configure Castor to load those JNDI names to retrieve connections.

Hit the deploy button, and bob's your uncle.

4. Always commit or rollback your transactions and close your Database instances properly; also in fail
situations.

Note

Just the obvious general rule on Java objects that hold resources: Don't wait for the VM to
finalize to have something happen to your objects when you could have released critical
resources at the appropriate point in the codebase.

5. Keep your transactions as short as possible. If you have an open transaction that holds a write lock on an

Advanced JDO

Castor (1.3.3) 253

object no other transaction can get a write lock on the same object which will lead to a
LockNotGrantedException.

execute() {
Database db = jdo.getDatabase();
db.begin();
// query objects from database with read only
db.commit();
db.close();

// do some time consuming processing with the data

Database db = jdo.getDatabase();
db.begin();
// use db.load() to load the objects you need to change again
// create, update or delete some objects
db.commit();
db.close();

}

It doesn't make sense to make a own transaction for every change you want to do to an object as this will
slow down your application. On the other hand if you have transactions with lots of objects involved taking
an valuable amonth of time you may consider to split this transactions to reduce the time an object is locked.

Also keep in mind that folks using lockmode of DBLocked do FOR UPDATE calls on things they read while
the transaction is open; if you're using dblocked mode, be aware of how your application does things. If
you're in one of the other modes, locks happen inside castor, and it's your responsibility to always use the
right access mode when accessing content.

If you can, for example, decide at the API layer whether or not an operation is going to ever need to modify
an object, and know that you will only ever use an instance in read only mode, load objects with access
mode read only, and not shared.

Limit use of read-write objects to situations in which it is likely you will need to perform updates.

Imagine, for a moment, that these transactions were in DBLocked mode - transactions which translate
directly into locks on the database.

If you're opening something up for modification on the DB - marking it as select FOR UPDATE - then that row
will be locked until you commit. The database would prevent any other transaction that wants to touch that
row from doing anything to it, and it would block on your transaction - deadlock at the SQL level.

Castor does the same things internally for its own access modes - Shared and Exclusive. Each has different
locking semantics; having good performance means understanding those locking semantics.

For example - read only transactions (should be) cheap. So there's no issue with holding those transactions
open a long time; because they only translate, for an instant, into a lock. The lock is released the moment the
load is completed and the object is dropped into read-only state within your transaction; read only operations
therefore operate, pretty much, without locking.

The lock is of course acquired because you might also have it in SHARED or EXCLUSIVE mode on
another thread - and that read-only operation isn't safe until those transactions close.

Once the lock is released, you're lock-free again, so the transaction basically has nothing in it that needs
anything doing.

That's not to say that holding transactions open is good practice - but transactions should always be thought
of as cheap to create and destroy and expensive to hold on to - never do heavy computation inside of one,

Advanced JDO

Castor (1.3.3) 254

unless you're willing to live with the consequences that arise from holding transactions on object sets that
others might need to access.

6. Query or load your objects read only whenever possible. Even if castor creates a lock on them this does not
prevent other threads from reading or writing them. Read only queries are also about 7 times faster
compared with default shared mode.

for queries:

String oql = "select o from FooBar o";
Query query = db.getOQLQuery(oql);
QueryResults results = query.execute(Database.ReadOnly);

to load an object by its identity:

Integer id = new Integer(7);
Foo foo = (Foo) db.load(Foo.class, id, Database.ReadOnly);

Default accessmode is evaluated as follows:

• if specified castor uses access mode from db.load() or query.execute(),

• if this is not available it takes access mode specified in class mapping,

• if nothing is specified in mapping it defaults to shared.

One cannot stress how important this is: If 99% of your application never writes an object, and you as a
programmer know it won't, then do something about it. If you're in a situation where you want the object to
be read-only most of the time, and only want a writable every now and then, do so just-in-time by
performing a load-modify-store operation in a single transaction for the shareable you want.

In other words: Don't use read-write objects unless you know you're likely to want to write them.

7. If there is a possibility you should prefer Database.load(Class, object) over Query.execute(String). I
suggest that as load() first tries to load the requested object from cache and only retrieves it from database
when it is not available there. When executing queries with Query.execute() the object will always be
loaded from database without looking at the cache. You may gain a improvement by a factor of 10 and more
when changing from Query.execute() to Database.load().

4.10.3. Further optimization

We hope above suggestions help you to resolve the problems you have. If you still need more performance
there are areas of improvement that are more difficult to resolve. For further ideas to improve your applications
performance you should take a loock at out performance test suite (PTF) which you can find in Castor's source
distribution under: src/tests/ptf/jdo.

Now, there's lots left to do - there is still the issue, for example, of dependent objects being slightly sub-optimal
in performance both in terms of the SQL that gets generated and the way it gets managed - but there will be
improvements over time to the way that this and other operations are performed.

But performance should be good right now. If it isn't, you'll need to think about whether you are using the

Advanced JDO

Castor (1.3.3) 255

optimal set of operations. No environment can predict your requirements - hinting to the system when objects
can be safely assumed to be read-only is vital to a high-performance implementation.

Advanced JDO

Castor (1.3.3) 256

Chapter 5. Castor JDO - Integration with Spring
ORM

5.1. Usage

5.1.1. Getting started using Maven 2

In order to start using the Spring ORM module for Castor JDO, you will have to have Maven 2 installed:

• Download and install Maven 2

As this project uses Maven 2 for build and deployment, all required compile-time and run-time dependencies
will automatically be resolved by Maven 2 and deployed into your local Maven 2 repository.

5.1.2. Project dependencies

Please add the following Maven dependency to your POM to include the Spring ORM package for Castor JDO
with your project:

<dependency>
<groupId>org.codehaus.castor</groupId>
<artifactId>spring-orm</artifactId>
<version>1.3</version>

</dependency>

If you create a dependency against a SNAPSHOT release, you will have to add the following <repository>

element to your POM as well, so that Maven 2 knows about the Codehaus Snapshot repository when trying to
resolve and download dependencies.

<repository>
<id>codehaus-snapshots</id>
<name>Maven Codehaus Snapshots</name>
<url>http://snapshots.maven.codehaus.org/maven2/</url>

</repository>

>

5.2. A high-level overview

This guide assumes that you are an experienced Castor JDO users that knows how to use Castor's interfaces and
classes to interact with a database. If this is not the case, please familiarize yourself with Castor JDO first.

5.2.1. Sample domain objects

The sample domain objects used in here basically define a Catalogue, which is a collection of Products. A
possible castor JDO mapping could look as follows:

Castor (1.3.3) 257

http://maven.apache.org
http://www.castor.org/jdo.html

<class name="org.castor.sample.Catalogue">
<map-to table="catalogue"/>
<field name="id" type="long">

<sql name="id" type="integer" />
</field>
<field name="products" type="org.castor.sample.Product" collection="arraylist">

<sql many-key="c_id" />
</field>

</class>

<class name="org.castor.sample.Product">
<map-to table="product"/>
<field name="id" type="long">

<sql name="id" type="integer" />
</field>
<field name="description" type="string">

<sql name="desc" type="varchar" />
</field>

</class>

5.2.2. Using Castor JDO manually

To e.g. load a given Catalogue instance as defined by its identity, and all its associated Product instances, the
following code could be used, based upon the Castor-specific interfaces JDOManager and Database.

JDOManager.loadConfiguration("jdo-conf.xml");
JDOManager jdoManager = JDOmanager.createInstance("sample");

Database database = jdoManager.getDatabase();
database.begin();
Catalogue catalogue = database.load(catalogue.class, new Long(1));
database.commit();
database.close();

For brevity, exception handling has been omitted completely. But is is quite obvious that - when using such
code fragments to implement various methods of a DAO - there's a lot of redundant code that needed to be
written again and again - and exception handling is adding some additional complexity here as well.

Enters Spring ORM for Castor JDO, a small layer that allows usage of Castor JDO through Spring ORM, with
all the known benefits (exception conversion, templates, tx handling).

5.2.3. Using Castor JDO with Spring ORM - Without CastorTemplate

Let's see how one might implement the loadProduct(int) of a ProductDAO class with the help of Spring ORM
using Castor JDO:

public class ProductDaoImpl implements ProductDao {

private JDOManager jdoManager;

public void setJDOManager(JDOManager jdoManager) {
this.jdoManager = jdoManager;

}

public Product loadProduct(final int id) {
CastorTemplate tempate = new CastorTemplate(this.jdoManager);
return (Product) template.execute(

new CastorCallback() {
public Object doInJdo(Database database) throws PersistenceException {
return (Product) database.load(Product.class, new Integer (id));

}
});

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 258

}
}

Still a lot of code to write, but compared to the above section, the DAO gets passed a fully configured
JDOManager instance through Spring's dependency injection mechanism. All that's required is configuration of
Castor's JDOManager as a Spring bean definition in an Spring application context as follows.

<bean id="jdoManager" class="org.castor.spring.orm.LocalCastorFactoryBean">
<property name="databaseName" value="test" />
<property name="configLocation" value="classpath:jdo-conf.xml" />

</bean>

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="JDOManager">
<ref bean="jdoManager"/>

</property>
</bean>

5.2.4. Using Castor JDO with Spring ORM - With CastorTemplate

Above code is still quite verbose, as it requires you to write short (though complex) callback functions. To ease
life of the Castor JDO user even more, a range of template methods have been added to CastorTemplate,
allowing the implementation of above ProductDAO to be shortened considerably.

public class ProductDaoImplUsingTemplate extends CastorTemplate implements ProductDao {

private JDOManager jdoManager;

public void setJDOManager(JDOManager jdoManager) {
this.jdoManager = jdoManager;

}

public Product loadProduct(final int id) {
return (Product) load(Integer.valueOf(id));

}

...
}

Changing the bean definition for myProductDAO to ...

<bean id="myProductDao" class="product.ProductDaoImplUsingTemplate">
<property name="JDOManager">
<ref bean="myJdoManager"/>

</property>
</bean>

loading an instance of Product by its identifier is reduced to ...

ProductDao dao = (ProductDAO) context.getBean ("myProductDAO");
Product product = dao.load(1);

5.2.5. Using Castor JDO with Spring ORM - With CastorDaoSupport

Alternatively to extending CastorTemplate, one could extend the CastorDaoSupport class and implement the

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 259

ProductDAO as follows.

public class ProductDaoImplUsingDaoSupport extends CastorDaoSupport implements ProductDao {

private JDOManager jdoManager;

public void setJDOManager(JDOManager jdoManager) {
this.jdoManager = jdoManager;

}

public Product loadProduct(final int id) {
return (Product) getCastorTemplate().load(Integer.valueOf(id));

}

...
}

Changing the bean definition for myProductDAO to ...

<bean id="myProductDao" class="product.ProductDaoImplUsingDaoSupport">
<property name="JDOManager">
<ref bean="myJdoManager"/>

</property>
</bean>

the code to load an instance of Product still is as shown above.

5.3. Data access through Castor JDO with the Spring
framework

We will start with a coverage of Hibernate in a Spring environment, using it to demonstrate the approach that
Spring takes towards integrating O/R mappers. This section will cover many issues in detail and show different
variations of DAO implementations and transaction demarcations.

5.3.1. Resource management

Typical business applications are often cluttered with repetitive resource management code. Many projects try
to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming
convenience. Spring advocates strikingly simple solutions for proper resource handling, namely IoC via
templating; for example infrastructure classes with callback interfaces, or applying AOP interceptors. The
infrastructure cares for proper resource handling, and for appropriate conversion of specific API exceptions to
an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to
any data access strategy. For direct JDBC, the JdbcTemplate class mentioned in a previous section cares for
connection handling, and for proper conversion of SQLException to the DataAccessException hierarchy,
including translation of database-specific SQL error codes to meaningful exception classes. It supports both
JTA and JDBC transactions, via respective Spring transaction managers.

This module implements Spring ORM/DAO support for Castor JDO, consisting of a CastorTemplate analogous
to JdbcTemplate, a CastorInterceptor, and a Castor transaction manager. The major goal is to allow for clear
application layering, with any data access and transaction technology, and for loose coupling of application
objects. No more business service dependencies on the data access or transaction strategy, no more hard-coded
resource lookups, no more hard-to-replace singletons, no more custom service registries. One simple and
consistent approach to wiring up application objects, keeping them as reusable and free from container
dependencies as possible. All the individual data access features are usable on their own but integrate nicely

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 260

with Spring's application context concept, providing XML-based configuration and cross-referencing of plain
JavaBean instances that don't need to be Spring-aware. In a typical Spring app, many important objects are
JavaBeans: data access templates, data access objects (that use the templates), transaction managers, business
services (that use the data access objects and transaction managers), web view resolvers, web controllers (that
use the business services), and so on.

5.3.2. JDOManager setup in a Spring container

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources like a
JDBC DataSource or a Castor JDOManager as beans in an application context. Application objects that need to
access resources just receive references to such pre-defined instances via bean references (the DAO definition
in the next section illustrates this). The following excerpt from an XML application context definition shows
how to set up a JDBC DataSource and a Castor JDOManager on top of it:

<beans>

<bean id="myDataSource"
class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
<property name="driverClassName" value="org.hsqldb.jdbcDriver" />
<property name="url" value="jdbc:hsqldb:hsql://localhost:9001" />
<property name="username" value="sa" />
<property name="password" value="" />

</bean>

<bean id="myJDOManager"
class="org.castor.spring.orm.LocalCastorFactoryBean">

<property name="databaseName" value="test" />
<property name="configLocation" value="classpath:jdo-conf.xml" />
</bean>

</beans>

Note that switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located DataSource
(usually managed by an application server) is just a matter of configuration:

<beans>

<bean id="myDataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="java:comp/env/jdbc/myds" />

</bean>

</beans>

You can also access a JNDI-located SessionFactory, using Spring's JndiObjectFactoryBean to retrieve and
expose it. However, that is typically not common outside of an EJB context.

5.3.3. The CastorTemplate

The basic programming model for templating looks as follows, for methods that can be part of any custom data
access object or business service. There are no restrictions on the implementation of the surrounding object at
all, it just needs to provide a Castor JDOManager. It can get the latter from anywhere, but preferably as bean
reference from a Spring application context - via a simple setJDOManager(..) bean property setter. The
following snippets show a DAO definition in a Spring container, referencing the above defined JDOManager,
and an example for a DAO method implementation.

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 261

<beans>

<bean id="myProductDao" class="org.exolab.castor.dao.ProductDaoImpl">
<property name="JDOManager"><ref bean="jdoManager"/></property>

</bean>

</beans>

public class ProductDaoImpl implements ProductDao {

private Castor castorTemplate;

public void setJDOManager(JDOManager jdoManager) {
this.castorTemplate = new CastorTemplate(jdoManager);

}

public Collection loadProductsByCategory(final String category)
throws DataAccessException {

return (Collection) this.castorTemplate.execute(
new CastorCallback() {

public Object doInCastor(Database database) throws PersistenceException {
database.begin();
OQLQuery query = database.getOQL("select p from org.exolab.castor.dao.ProductDao p " +

" where p.category = ?");
query.bind(category);
QueryResults results = query.execute();
database.commit();
return Collections.list();

}
);

}
}

A callback implementation can effectively be used for any Castor data access. CastorTemplate will ensure that
Database instances are properly opened and closed, and automatically participate in transactions. The template
instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class.

For simple single step actions like a single find, load, saveOrUpdate, or delete call, CastorTemplate offers
alternative convenience methods that can replace such one line callback implementations. Furthermore, Spring
provides a convenient CastorDaoSupport base class that provides a setJDOManager(..) method for receiving a
JDOManager, and getJDOManager() and getCastorTemplate()for use by subclasses.

In combination, this allows for very simple DAO implementations for typical requirements:

public class ProductDaoImpl extends HibernateDaoSupport
implements ProductDao {

public Collection loadProductsByCategory(String category)
throws DataAccessException {
return this.getCastorTemplate().find("select p from

test.Product product where p.category=?", category);
}

}

5.3.4. Implementing Spring-based DAOs without callbacks

As alternative to using Spring's CastorTemplate to implement DAOs, data access code can also be written in a
more traditional fashion, without wrapping the Hibernate access code in a callback, while still complying to
Spring's generic DataAccessException hierarchy. Spring's CastorDaoSupport base class offers methods to
access the current transactional Database and to convert exceptions in such a scenario; similar methods are also

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 262

available as static helpers on the JDOManagerUtils class. Note that such code will usually pass "false" into the
getDatabased(..) method's "allowCreate" argument, to enforce running within a transaction (which avoids the
need to close the returned Database, as it's lifecycle is managed by the transaction).

public class ProductDaoImpl extends HibernateDaoSupport
implements ProductDao {

public Collection loadProductsByCategory(String category)
throws DataAccessException, MyException {

Database database = getDatabase(getJDOManager(), false);
try {

List result = database.find("select p from test.Product p where " +
" product.category=?", category, Castor.STRING);

if (result == null) {
throw new MyException("invalid search result");

}
return result;

} catch (PersistenceException ex) {
throw convertCastorAccessException(ex);

}
}

}

The major advantage of such direct Castor JDO access code is that it allows any checked application exception
to be thrown within the data access code, while CastorTemplate is restricted to unchecked exceptions within the
callback. Note that one can often defer the corresponding checks and the throwing of application exceptions to
after the callback, which still allows working with CastorTemplate. In general, the CastorTemplate class'
convenience methods are simpler and more convenient for many scenarios.

5.3.5. Programmatic transaction demarcation

Transactions can be demarcated in a higher level of the application, on top of such lower-level data access
services spanning any number of operations. There are no restrictions on the implementation of the surrounding
business service here as well, it just needs a Spring PlatformTransactionManager. Again, the latter can come
from anywhere, but preferably as bean reference via a setTransactionManager(..) method - just like the
productDAO should be set via a setProductDao(..) method.

The following snippets show a transaction manager and a business service definition in a Spring application
context, and an example for a business method implementation.

<beans>

<bean id="myTxManager"
class="org.castor.spring.orm.CastorTransactionManager">
<property name="jdoManager" ref="myJDOManager" />

</bean>

<bean id="myProductService" class="product.ProductServiceImpl">
<property name="transactionManager" ref="myTxManager" />
<property name="productDao" ref="myProductDao" />

</bean>

</beans>

public class ProductServiceImpl implements ProductService {

private TransactionTemplate transactionTemplate;

private ProductDao productDao;

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 263

public void setTransactionManager(PlatformTransactionManager transactionManager) {
this.transactionTemplate = new TransactionTemplate(transactionManager);

}

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

public void increasePriceOfAllProductsInCategory(final String category) {
this.transactionTemplate.execute(

new TransactionCallbackWithoutResult() {
public void doInTransactionWithoutResult(TransactionStatus status) {

List productsToChange = productDAO.loadProductsByCategory(category);
// do the price increase...

}
}

);
}

}

5.3.6. Declarative transaction demarcation

Alternatively, one can use Spring's declarative transaction support, which essentially enables you to replace
explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor configured in
a Spring container. This allows you to keep business services free of repetitive transaction demarcation code,
and allows you to focus on adding business logic which is where the real value of your application lies.
Furthermore, transaction semantics like propagation behavior and isolation level can be changed in a
configuration file and do not affect the business service implementations.

<beans>

<bean id="myTxManager"
class="org.castor.spring.orm.CastorTransactionManager">
<property name="jdoManager" ref="myJDOManager" />

</bean>

<bean id="myProductService"
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces" value="product.ProductService" />
<property name="target">

<bean class="product.DefaultProductService">
<property name="productDao" ref="myProductDao" />

</bean>
</property>
<property name="interceptorNames">

<list>
<value>myTxInterceptor</value><!-- the transaction interceptor (configured elsewhere) -->

</list>
</property>

</bean>

</beans>

public class ProductServiceImpl implements ProductService {

private ProductDao productDao;

public void setProductDao(ProductDao productDao) {
this.productDao = productDao;

}

// notice the absence of transaction demarcation code in this method
// Spring's declarative transaction infrastructure will be demarcating
//transactions on your behalf
public void increasePriceOfAllProductsInCategory(final String category) {

List productsToChange = this.productDAO.loadProductsByCategory(category);
// ...

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 264

}
}

Spring's TransactionInterceptor allows any checked application exception to be thrown with the callback code,
while TransactionTemplate is restricted to unchecked exceptions within the callback. TransactionTemplate will
trigger a rollback in case of an unchecked application exception, or if the transaction has been marked
rollback-only by the application (via TransactionStatus). TransactionInterceptor behaves the same way by
default but allows configurable rollback policies per method.

The following higher level approach to declarative transactions doesn't use the ProxyFactoryBean, and as such
may be easier to use if you have a large number of service objects that you wish to make transactional.

Note

You are strongly encouraged to read the section entitled Section 9.5, “Declarative transaction
management” if you have not done so already prior to continuing.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.0.xsd
http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.0.xsd">

<!-- JDOManager, DataSource, etc. omitted -->

<bean id="myTxManager"
class="org.castor.spring.orm.CastorTransactionManager">
<property name="jdoManager" ref="myJDOManager" />

</bean>

<aop:config>
<aop:pointcut id="productServiceMethods"

expression="execution(* product.ProductService.*(..))" />
<aop:advisor advice-ref="txAdvice"

pointcut-ref="productServiceMethods" />
</aop:config>

<tx:advice id="txAdvice" transaction-manager="myTxManager">
<tx:attributes>

<tx:method name="increasePrice*" propagation="REQUIRED" />
<tx:method name="someOtherBusinessMethod"

propagation="REQUIRES_NEW" />
<tx:method name="*" propagation="SUPPORTS" read-only="true" />

</tx:attributes>
</tx:advice>

<bean id="myProductService" class="product.SimpleProductService">
<property name="productDao" ref="myProductDao" />

</bean>

</beans>

5.3.7. Transaction management strategies

Both TransactionTemplate and TransactionInterceptor delegate the actual transaction handling to a
PlatformTransactionManager instance, which can be a CastorTransactionManager (for a single Castor
JDOManager, using a ThreadLocal Database under the hood) or a JtaTransactionManager (delegating to the
JTA subsystem of the container) for Castor applications. You could even use a custom

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 265

PlatformTransactionManager implementation. So switching from native Castor transaction management to
JTA, such as when facing distributed transaction requirements for certain deployments of your application, is
just a matter of configuration. Simply replace the Castor transaction manager with Spring's JTA transaction
implementation. Both transaction demarcation and data access code will work without changes, as they just use
the generic transaction management APIs.

For distributed transactions across multiple Castor JDOManager instances, simply combine
JtaTransactionManager as a transaction strategy with multiple LocalCastorFactoryBean definitions. Each of
your DAOs then gets one specific JDOManager reference passed into it's respective bean property. If all
underlying JDBC data sources are transactional container ones, a business service can demarcate transactions
across any number of DAOs and any number of session factories without special regard, as long as it is using
JtaTransactionManager as the strategy.

<beans>

<bean id="myDataSource1"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName value=" java:comp/env/jdbc/myds1" />

</bean>

<bean id="myDataSource2"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="java:comp/env/jdbc/myds2" />

</bean>

<bean id="myJDOManager1"
class="org.castor.spring.orm.LocalCastorFactoryBean">

<property name="databaseName" value="test1" />
<property name="configLocation" value="classpath:jdo-conf-1.xml" />
</bean>

<bean id="myJDOManager2"
class="org.castor.spring.orm.LocalCastorFactoryBean">

<property name="databaseName" value="test2" />
<property name="configLocation" value="classpath:jdo-conf-2.xml" />
</bean>

<bean id="myTxManager"
class="org.springframework.transaction.jta.JtaTransactionManager" />

<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="jdoManager" ref="myJDOManager1" />

</bean>

<bean id="myInventoryDao" class="product.InventoryDaoImpl">
<property name="jdoManager" ref="myJDOManager2" />

</bean>

<!-- this shows the Spring 1.x style of declarative transaction configuration -->
<!-- it is totally supported, 100% legal in Spring 2.x, but see also above for the sleeker, Spring 2.0 style -->
<bean id="myProductService"

class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager" ref="myTxManager" />
<property name="target">

<bean class="product.ProductServiceImpl">
<property name="productDao" ref="myProductDao" />
<property name="inventoryDao" ref="myInventoryDao" />

</bean>
</property>
<property name="transactionAttributes">

<props>
<prop key="increasePrice*">PROPAGATION_REQUIRED</prop>
<prop key="someOtherBusinessMethod">

PROPAGATION_REQUIRES_NEW
</prop>
<prop key="*">PROPAGATION_SUPPORTS,readOnly</prop>

</props>
</property>

</bean>

</beans>

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 266

Both CastorTransactionManager and JtaTransactionManager allow for proper JVM-level cache handling with
Castor - without container-specific transaction manager lookup or JCA connector (as long as not using EJB to
initiate transactions).

CastorTransactionManager can export the JDBC Connection used by Castor to plain JDBC access code, for a
specific DataSource. This allows for high-level transaction demarcation with mixed Castor/JDBC data access
completely without JTA, as long as you are just accessing one database! CastorTransactionManager will
automatically expose the Castor transaction as JDBC transaction if the passed-in JDOManager has been set up
with a DataSource (through the "dataSource" property of the LocalCastorFactoryBean class).

Alternatively, the DataSource that the transactions are supposed to be exposed for can also be specified
explicitly, through the "dataSource" property of the CastorTransactionManager class.

5.4. Build instructions

5.4.1. Prerequisites

In order to build the Sping ORM module for Castor JDO, you will have the following requirements met on your
system:

• Download and install Maven 2

• Download and install a Subversion client.

As this project uses Maven 2 for build and deployment, all required compile-time dependencies will
automatically be resolved by Maven 2 and deployed into your local Maven 2 repository.

5.4.2. Building the Spring ORM module

This section describes how to build the Spring module from a command line using Maven 2. Whilst there is
support for Maven 2 in various IDEs (including e.g. Eclipse, IDEA, etc.), using the Maven command line
seems to be the most adequate least common denominator.

This section assumes that you have ckecked out the latest sources from the SVN repsitory for the Spring ORM
module for Castor JDO. Instructions for doing so are provided here.

Open a command line (shell) on your system, and issue the following commands:

> mvn jar

Above command will compile the sources and create the distribution JAR in the target directory of the project
root.

To install the newly created distribution JAR into your local Maven 2 repository, please issue the following
command:

> mvn install

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 267

http://maven.apache.org
source-repository.html

To create the complete project documentation - in addition to the distribution assembly, please issue ...

> mvn site

Castor JDO - Integration with Spring ORM

Castor (1.3.3) 268

Chapter 6. Castor JDO - Support for the JPA
specification

6.1. JPA annotations - Motivation

It has always been a goal of the Castor JDO project to eventually fully support the JPA specification and
become a first class JPA provider that can e.g. be easily integrated with Spring ORM. Whilst full compliance is
still work in progress, there are several small areas where sufficient progress has been made, and where partial
support will be made available to the user community.

One such area is (partial) support for JPA annotations. This chapter highlights how JPA-annotated Java classes
can be used with Castor JDO to persist such classes through the existing persistence framework part of Castor,
without little additional requirements.

The following sections describe ...

1. The prerequisites.

2. The current limitations.

3. The supported JPA annotations.

4. How to use Castor JDO to persist JPA-annotated classes.

5. How to use Castor JDO as Spring ORM provider to persist JPA-annotated classes.

6.2. Prerequisites and outline

The following sections assume that you have a (set of) JPA-annotated domain classes which you would like to
persist using Castor JDO.

As such, we explain how to enlist those classes with Castor JDO (through the JDOClassDescriptorResolver

interface, so that Castor JDO will be able to find and work with your JPA-annotated classes. In addition, we
explain how to achieve the same with Spring ORM and the Spring ORM provider for Castor JDO.

By the end of this chapter is should become obvious that Castor JDO is well-prepared to integrate with the
annotation part of the JPA specification, although support for JPA annotations is currently limited.

6.3. Limitations and Basic Information

6.3.1. persistence.xml

In Castor JPA there is no use or support for a JPA persistence.xml configuration file for now. All required
configuration needs to be supplied by one of the following means:

• Castor JDO configuration file.

Castor (1.3.3) 269

• JDOClassDescriptorResolver configuration.

• Spring configuration file for the Spring ORM provider for Castor JDO.

6.3.2. JPA access type and the placing of JPA annotations

Because Castor does not support direct field access, this feature is not supported by Castor JPA. Thus all
annotations have to be defined on the getter methods of the fields. If JPA related annotations are found on
fields, Castor will throw an exception.

6.3.3. Primary Keys

Primary keys made of single fields are supported by Castor as defined in the JPA specification (through the use
of the @Id annotation). If you need to define composite primary keys, please note that that Castor does not
support relations with composite primary keys.

If you still want to persist single classes with the use of composite primary keys, none of the available JPA
annotations (@EmbeddedId or @IdClass) is supported as such. Instead Castor uses a kind of ad-hoc IdClass

mechanism. Simply define multiple @Id annotations on the fields that make up your composite primary key,
and Castor JDO will internally create the relevant constructs.

6.3.4. Inheritance, mapped superclasses, etc.

These JPA annotations are currently not supported by Castor JDO. For now, you can only define entities.

6.3.5. Relations

Besides the fact, that Castor does not support composite primary keys in relations, there are some limitations on
the different kinds of relations between entities. For detailed information, please read the documentation about
the different relations types further below.

6.4. An outline of JPA-Annotations

S ... Supported
PS ... Partially Supported
NS ... Not Supported

Table 6.1. JPA-Annotations

Annotation Supported Comment

AssociationOverride NS

AssociationOverrides NS

AttributeOverride NS

AttributeOverrides NS

Basic S See information on Castor fetch

Castor JDO - Support for the JPA specification

Castor (1.3.3) 270

Annotation Supported Comment

types!

Column PS Supported: column name, nullable

ColumnResult NS

DiscriminatorColumn NS Castor does not support Joined
Table Class Hierachy.

DiscriminatorValue NS Castor does not support Joined
Table Class Hierachy.

Embeddable NS

Embedded NS

EmbeddedId NS Castor does not support composed
primary keys embedded in classes
of their own.

Entity S This annotation is needed to tell
Castor that this Class is an entity.

EntityListeners S

EntityResult NS

Enumerated S

ExcludeDefaultListeners S

ExcludeSuperclassListeners S

FieldResult NS

GeneratedValue NS

Id S Use this annotation to make a field
a primary key (or part of it).

IdClass NS Castor creates IdClass-like
behaviour implicity when you
define multiple Id fields. Castor
does not support composed
primary keys in relations!

Inheritance NS

JoinColumn PS Supported: name

JoinColumns NS This is not supported because
Castor does not support composed
keys in relations.

JoinTable PS Supported: name, joincolumns,
inverseJoincolumns

Lob S

ManyToMany PS this is not tested properly yet.

Castor JDO - Support for the JPA specification

Castor (1.3.3) 271

Annotation Supported Comment

ManyToOne PS Supported: targetEntity, fetch,
optional, cascade - Relations
MUST BE optional! Required
relations are not supported.

MapKey NS

MappedSuperclass NS

NamedQuery S This annotation is used to specify a
named query in OQL.

NamedQueries S This annotation specifies an array
of named queries

NamedNativeQuery S This annotation is used to specify a
native SQL named query.

NamedNativeQueries S This annotation specifies an array
of named native queries.

OneToMany PS Supported: targetEntity, fetch,
mappedBy, cascade

OneToOne PS Supported: targetEntity, fetch,
optional, cascade - Relations
MUST BE optional! Required
relations are not supported.

OrderBy NS

PersistenceContext NS

PersistenceContexts NS

PersistenceProperty NS

PersistenceUnit NS

PersistenceUnits NS

PostLoad S

PostPersist S

PostRemove S

PostUpdate S

PrePersist S

PreRemove S

PreUpdate S

PrimaryKeyJoinColumn NS

PrimaryKeyJoinColumns NS

QueryHint NS

SecondaryTable NS

Castor JDO - Support for the JPA specification

Castor (1.3.3) 272

Annotation Supported Comment

SecondaryTables NS

SequenceGenerator NS

SqlResultSetMapping NS

SqlResultSetMappings NS

Table PS Supported: name

TableGenerator NS

Temporal S

Transient S

UniqueConstraint NS

Version NS

6.5. Usage of JPA annotations - Configuration

This selection of HOW-TOs will show you how to persist JPA-annotated classes with Castor JDO, and will
outline the required steps for each of the following cases:

• Singular (stand-alone) entities

• 1:1 relations

• 1:M relations

• M:N relations

6.5.1. HOW-TO persist a single class (@Entity, @Table, @Id)

The goal is to take an existing JPA-annotated class Single and persist it with Castor JDO. Let's first have a
look at the domain class itself, first without JPA annotattions.

public class Single {
private int id;
private String name;

public int getId() { ... }

public void setId(int id) { ... }

public String getName() { ... }

public void setName(String name) { ... }
}

Here's the same class again, this time with JPA annotations.

@Entity
@Table(name="mySingleTable")

Castor JDO - Support for the JPA specification

Castor (1.3.3) 273

public class Single {
private int id;
private String name;

@Id
@Column(name="id")
public int getId() { ... }

public void setId(int id) { ... }

public String getName() { ... }

public void setName(String name) { ... }
}

As shown, the class Single is mapped against the table mySingleTable, and its fields id and name are mapped
to the columns id and name, where the column name for the id property is supplied explicitly and where the
column name for the name property is derived from the property itself.

Next point is to create an DAO interface and its implementation where we will be using CastorDaoSupport

from Castor's support for Spring ORM to implement the required methods.

public interface SingleDao {

void save(Single single);

Single get(int id);

void delete(Single single);

}

public class SingleCastorDao extends CastorDaoSupport implements SingleDao {

public void delete(Single single) {
this.getCastorTemplate().remove(single);

}

public Single get(int id) {
return (Single) this.getCastorTemplate().load(Single.class, new Integer(id));

}

public void save(Single single) {
this.getCastorTemplate().create(single);

}
}

There's one small final code change needed: For Castor to be able to work with JPA-annotated classes, you
have to configure an instance of JDOClassDescriptorResolver and pass it to your JDOManager, else Castor
won't be able to see those class files. Simply add the individual classes one by one or the package(s) as shown
below:

JDOClassDescriptorResolver resolver = new JDOClassDescriptorResolverImpl();
resolver.addClass(org.castor.jpa.Single.class);
// or alternatively you can add the package:
resolver.addPackage("org.castor.jpa");

InputSource jdoConfiguration = ...;
JDOManager.loadConfiguration(jdoConfiguration, null, null, resolver);

JDOManager jdoManager = JDOManager.createInstance("jpa-extensions");
...

Castor JDO - Support for the JPA specification

Castor (1.3.3) 274

6.5.2. HOW-TO persist a 1:1 relation (@OneToOne)

The goal is to take the existing JPA-annotated classes OneToOne_A and OneToOne_B and persist them with
Castor JDO. Let's first have a look at the domain classes themselves, this time with JPA annotations already in
place.

@Entity
public class OneToOne_A {

private int id;
private String title;

@Id
@Column(name = "id")
public int getId() { ... }

public void setId(int id) { ... }

@Column(name = "name")
public String getTitle() { ... }

public void setTitle(String title) { ... }
}

@Entity
@Table(name="OneToOne_B")
public class B {

private int id;
private String name;
private OneToOne_A objA;

@Id
@Column(name = "id")
public int getId() { ... }

public void setId(int id) { ... }

@Column(name = "name")
public String getName() { ... }

public void setName(String name) { ... }

@OneToOne(optional=false)
public OneToOne_A getOneToOne_A() { ... }

public void setOneToOne_a(OneToOne_A objA) { ... }
}

As shown, the class OneToOne_A is mapped against the table OneToOne_A (implicit mapping), and the B against
the table OneToOne-B (explicit mapping). Please note the @OneToOne annotation that specifies the 1:1 relation
from class B to class OneToOne_A.

As with the example shown further above, do not forget to register all classes involved with the
JDOClassDescriptorResolver as shown below:

JDOClassDescriptorResolver fragment:

resolver.addClass(org.castor.jpa.OneToOne_A.class);
resolver.addClass(org.castor.jpa.B.class);

or with the addPackage method:

Castor JDO - Support for the JPA specification

Castor (1.3.3) 275

resolver.addPackage("org.castor.jpa");

6.5.3. Persist one to many relation (@OnetoMany)

First we have to annotate our java classes.

@Entity
@Table(name="OneToMany_actor")
public class Actor {

private int svnr;
private String lastname;
private String firstname;

@Id
public int getSvnr() { ... }

public void setSvnr(int svnr) { ... }

@Column(name="surname")
public String getLastname() { ... }
public void setLastname(String lastname) { ... }

@Column(name="firstname")
public String getFirstname() { ... }
public void setFirstname(String firstname) { ... }

}

@Entity
@Table(name="OneToMany_broadcast")
public class Broadcast {

private int id;
private String name;
private Collection<Actor> actors;

@Id
public int getId() { ... }

public void setId(int id) { ... }

public String getName() { ... }

public void setName(String name) { ... }

@OneToMany(targetEntity=Actor.class, mappedBy="actor_id")
public Collection<Actor> getActors() { ... }

public void setActors(Collection<Actor> actors) { ... }
}

What you see is that with the small modification you can persist one to many relations easily.

Last don't forget to change your JDOClassDescriptorResolver accordingly.

6.5.4. HOW-TO create and use a named query (@NamedQuery)

The @NamedQuery annotation is used to specify a named query in castor's own query language (OQL) and it is
expressed in metadata. The annotation takes the name and an OQL query as parameters.

To define a named query, we first need a persistence entity where we can attach the @NamedQuery annotation.

package your.package;

Castor JDO - Support for the JPA specification

Castor (1.3.3) 276

@Entity
@NamedQuery(name = "findPersonByName",

query = "SELECT p FROM your.package.Person p WHERE p.name = $1")
public class Person {

private long id;
private String name;

@Id
public long getId() {...}

public void setId(final long id) {...}

public String getName() {...}

public void setName(final String name) {...}
}

As you can see, we defined a query using the name findPersonByName. The query itself uses $1 as a
placeholder in its WHERE-clause, which must be bound when executing the query.

The following code sample illustrates how to execute the named query defined above:

Database db = jdoManager.getDatabase();

db.begin();
final OQLQuery query = db.getNamedQuery("findPersonByName"); ❶
query.bind("Max Mustermann"); ❷
final QueryResults queryResults = query.execute(); ❸
final Person queriedPerson = (Person) queryResults.next();
queryResults.close();
db.commit();

Let's have a closer look on some of the lines from this example.

❶ ... creates an OQL query using the above defined named query.
❷ .. binds the placeholder $1 to a value.
❸ ... executes the query and handle the results.

6.5.5. HOW-TO create and use multiple named queries (@NamedQueries)

The @NamedQueries annotation is used to specifiy multiple named queries.

package your.package;

@Entity
@NamedQueries({

@NamedQuery(name = "findPersonByName",
query = "SELECT p FROM your.package.Person p WHERE p.name = $1"),

@NamedQuery(name = "findPersonById",
query = "SELECT p FROM you.package.Person p WHERE p.id = $1")

})
public class Person {

private long id;
private String name;

@Id
public long getId() {...}

public void setId(final long id) {...}

public String getName() {...}

Castor JDO - Support for the JPA specification

Castor (1.3.3) 277

public void setName(final String name) {...}
}

In the obove example we defined two named queries, namly findPersonByName and findPersonById. The
usage of each query is identical to the usasage of a single named query.

Database db = jdoManager.getDatabase();

db.begin();
final OQLQuery query = db.getNamedQuery("findPersonById");
query.bind(1000L);
final QueryResults queryResults = query.execute();
final Person queriedPerson = (Person) queryResults.next();
queryResults.close();
db.commit();

6.5.6. HOW-TO create and use a named native query
(@NamedNativeQuery)

A named native query is a named query using native SQL syntax instead of castor's own query language. The
handling of the annotation is similar to named queries.

First we need a entity to attach a query.

@Entity
@Table(name = personTable)
@NamedNativeQuery(name = "selectAllPersons",

query = "SELECT * FROM personTable")
public class Person {

private long id;
private String name;

@Id
public long getId() {...}

public void setId(final long id) {...}

public String getName() {...}

public void setName(final String name) {...}
}

Although the query itself is written in native SQL syntax, we - again - use a OQLQuery object to execute the
query.

Database db = jdoManager.getDatabase();

db.begin();
final OQLQuery query = db.getNamedQuery("selectAllPersons");
final QueryResults queryResults = query.execute();
... //process the results
queryResults.close();
db.commit();

6.5.7. HOW-TO create and use multiple named native queries

Castor JDO - Support for the JPA specification

Castor (1.3.3) 278

(@NamedNativeQueries)

The @NamedNativeQueries annotation is used to specifiy multiple named native SQL queries.

package your.package;

@Entity
@Table(name = personTable)
@NamedNativeQueries({

@NamedNativeQuery(name = "selectAllPersons",
query = "SELECT * FROM personTable"),

@NamedNativeQuery(name = "findMustermann",
query = "SELECT * FROM personTable WHERE name='Max Mustermann' and id=1000")

})
public class Person {

private long id;
private String name;

@Id
public long getId() {...}

public void setId(final long id) {...}

public String getName() {...}

public void setName(final String name) {...}
}

As we have already seen, the usage of the two above defined queries is equivalent to the usage of a single
named native query.

Database db = jdoManager.getDatabase();

db.begin();
final OQLQuery query = db.getNamedQuery("findMustermann");
final QueryResults queryResults = query.execute();
final Person maxMustermann = (Person) queryResults.next();
queryResults.close();
db.commit();

6.5.8. HOW-TO use persistence callbacks

The following annotations can be used for handling persistence callbacks via JPA:

• PostLoad

• PrePersist

• PostPersist

• PreUpdate

• PostUpdate

• PreRemove

• PostRemove

Castor JDO - Support for the JPA specification

Castor (1.3.3) 279

Additionally, there are the following listener-related annotations:

• EntityListeners

• ExcludeDefaultListeners

• ExcludeSuperclassListeners

So, here's a basic usage example:

@Entity
public class Person {

private final Log log = LogFactory.getLog(this.getClass());

private long id;
private String name;

@Id
public long getId() {

return id;
}

public void setId(final long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(final String name) {
this.name = name;

}

@PostLoad
protected void testPostLoadCallbackHooking() {

log.debug(String.format("Hello from `PostLoad`. My name is %s.",
this.name));

}

@PrePersist
protected void validateCreation() {

if (this.name.equals("Max Mustermann")) {
throw new PersistenceException(String.format(

"Person mustn't be called %s.", this.name));
}

}

@PostPersist
protected void validatePersistence() {

if (this.name.equals("Manfred Mustermann")) {
throw new PersistenceException(String.format(

"Person shouldn't be called %s either.", this.name));
}

}

@PreRemove
protected void validateRemoval() {

if (this.name.equals("Max Musterfrau")) {
throw new PersistenceException(this.name + " mustn't be removed.");

}
}

@PostRemove
protected void validateDeletion() {

if (this.name.equals("Manfred Musterfrau")) {
throw new PersistenceException(this.name

+ " shouldn't be removed either.");
}

}

@PreUpdate

Castor JDO - Support for the JPA specification

Castor (1.3.3) 280

protected void validateModification() {
if (this.name.equals("Max Musterfrau")) {

throw new PersistenceException(String.format(
"Person mustn't be renamed to %s.", this.name));

}
}

@PostUpdate
protected void validateUpdating() {

if (this.name.equals("Hans Wurst")) {
throw new PersistenceException(String.format(

"Person shouldn't be renamed to %s either.", this.name));
}

}

}

As one can see from this example, such callbacks can e.g. be used for handling validation based on CRUD
(create, retrieve, update, delete) operation events.

Furthermore, there are possibilites to define listeners which allow for decoupling callback handling from
entities.

Here's an example for that:

@Entity
@EntityListeners(DogListener.class)
public class Dog extends Animal {

private long id;

@Id
public long getId() {

return id;
}

public void setId(final long id) {
this.id = id;

}

}

// Corresponding listener.
public class DogListener {

@PostPersist
protected void postPersistDogListener() {

// Do something.
}

}

Apart from that, ExcludeDefaultListeners and ExcludeSuperclassListeners enable specifying exclusion of
listeners within an inheritance chain of entities.

6.5.9. HOW-TO use @Enumerated

Enumerated can be used to persist Enum types.

Here's an example:

@Entity
public class EnumEntity {

Castor JDO - Support for the JPA specification

Castor (1.3.3) 281

private long id;
private StringEnum stringEnum;
private OrdinalEnum ordinalEnum;

@Id
public long getId() {

return id;
}

public void setId(final long id) {
this.id = id;

}

@Enumerated(STRING)
public StringEnum getStringEnum() {

return stringEnum;
}

public void setStringEnum(final StringEnum stringEnum) {
this.stringEnum = stringEnum;

}

public OrdinalEnum getOrdinalEnum() {
return ordinalEnum;

}

public void setOrdinalEnum(final OrdinalEnum ordinalEnum) {
this.ordinalEnum = ordinalEnum;

}

}

So, by default enums are serialized to their corresponding ordinal value representations for persistence. In this
case, it's also sufficient to skip explicitly defining so via Enumerated. If serialization to respective string name
representations is preferred annotating accordingly is required.

6.5.10. HOW-TO use @Temporal

This annotation can be used to specify properties mapped to temporal data structures.

Example:

@Entity
public class Person {

private long id;
private Date birthDate;
private Date anotherDate;
private Date yetAnotherDate;

@Id
public long getId() {

return id;
}

public void setId(final long id) {
this.id = id;

}

@Temporal(TIMESTAMP)
public Date getBirthDate() {

return birthDate;
}

public void setBirthDate(final Date birthDate) {
this.birthDate = birthDate;

}

@Temporal(TIME)
public Date getAnotherDate() {

Castor JDO - Support for the JPA specification

Castor (1.3.3) 282

return anotherDate;
}

public void setAnotherDate(final Date anotherDate) {
this.anotherDate = anotherDate;

}

@Temporal(DATE)
public Date getYetAnotherDate() {

return yetAnotherDate;
}

public void setYetAnotherDate(final Date yetAnotherDate) {
this.yetAnotherDate = yetAnotherDate;

}

}

So, it's possible to say which underlying DB-based field data structure to use (datetime, date or time).

6.5.11. HOW-TO use @Lob

Here's an example for that:

@Entity
public class LobEntity {

private long id;
private String clob;
private byte[] blob;

@Id
public long getId() {

return id;
}

public void setId(final long id) {
this.id = id;

}

@Lob
public String getClob() {

return clob;
}

public void setClob(final String clob) {
this.clob = clob;

}

@Lob
public byte[] getBlob() {

return blob;
}

public void setBlob(final byte[] blob) {
this.blob = blob;

}

}

Consequently, default behavior here is to serialize to CLOB for character-based data and to BLOB for data based
on byte arrays (i.e., files).

6.6. Integration with Spring ORM for Castor JDO

Castor JDO - Support for the JPA specification

Castor (1.3.3) 283

This guide will show you how to enable the use of JPA annotations with Castor JDO in the context of Spring,
Spring ORM and the existing Spring ORM support for Castor JDO.

6.6.1. A typical sample

Let's look at a typical Spring configuration file that shows how to use Castor JDO with Spring as a Spring
ORM provider.

spring-config.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

<!-- Enable transaction support using Annotations -->
<tx:annotation-driven transaction-manager="transactionManager" />

<bean id="transactionManager"
class="org.castor.spring.orm.CastorTransactionManager">
<property name="JDOManager" ref="jdoManager" />

</bean>

<bean id="jdoManager"
class="org.castor.spring.orm.LocalCastorFactoryBean">
<property name="databaseName" value="dbName" />
<property name="configLocation" value="jdo-conf.xml" />

</bean>

<bean id="singleDao" class="SingleCastorDao">
<property name="JDOManager">

<ref bean="jdoManager"/>
</property>

</bean>
</beans>

Above Spring application context configures the following Spring beans:

• A factory bean for JDOManager instantiation

• A Castor-specific transaction manager.

• The DAO implementation as shown above.

As shown above, the bean definition for the JDOManager factory bean points to a Castor JDO configuration file
(jdo-conf.xml), whose content is shown below:

jdo-conf.xml

<!DOCTYPE jdo-conf PUBLIC "-//EXOLAB/Castor JDO Configuration DTD Version 1.0//EN""http://castor.org/jdo-conf.dtd">
<jdo-conf>
<database name="dbName" engine="mysql">

<driver url="jdbc:mysql://localhost:3306/single"
class-name="com.mysql.jdbc.Driver">

<param name="user" value="user" />
<param name="password" value="password" />

</driver>
<mapping href="mapping-empty.xml" />

</database>
<transaction-demarcation mode="local" />

Castor JDO - Support for the JPA specification

Castor (1.3.3) 284

</jdo-conf>

More on how to configure the Spring ORM provider for Castor JDO can be found at TBD.

6.6.2. Adding a JDOClassDescriptorResolver configuration

In order to use JPA-annotated classes with the Spring ORM provider for Castor JDO, you will have to use and
configure a JDOClassDescriptorResolver through an additional bean definition and link it to your JDOManager
bean factory definition.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

...

<bean id="classDescriptorResolver" ❶
class="org.castor.spring.orm.ClassDescriptorResolverFactoryBean">

<property name="classes">
<list>

<value>org.castor.jpa.test.Single</value>
</list>

</property>
</bean>

...

<bean id="jdoManager"
class="org.castor.spring.orm.LocalCastorFactoryBean">
<property name="databaseName" value="dbName" />
<property name="configLocation" value="jdo-conf.xml" />
<property name="classDescriptorResolver" ref="classDescriptorResolver" /> ❷

</bean>

...
</beans>

where

❶ Defines a JDOClassDescriptorResolver bean enlisting all the Java (domain) classes that carry JPA
annotations.

❷ links the JDOClassDescriptorResolver bean to the classDescriptorResolver property of the
JDOManager bean definition.

If your domain classes share a set of packages, it is also possible to enlist those packages with the
JDOClassDescriptorResolver bean, replacing the bean definition shown above as follows:

<bean id="classDescriptorResolver"
class="org.castor.spring.orm.ClassDescriptorResolverFactoryBean">

<property name="packages">
<list>

<value>org.castor.jpa.test</value>
</list>

</property>
</bean>

6.6.3. JPA Callbacks

Castor JDO - Support for the JPA specification

Castor (1.3.3) 285

In order to enable JPA callbacks handling via Spring ORM following exemplary config snippet is required:

<bean id="jdoManager" class="org.castor.spring.orm.LocalCastorFactoryBean">
<property name="databaseName" value="testSimple" />
<property name="configLocation"

value="classpath:org/castor/jpa/scenario/callbacks/derby-jdo-conf.xml" />
<property name="classDescriptorResolver" ref="classDescriptorResolver" />
<property name="callbackInterceptor" ref="jpaCallbackHandler" />

</bean>

<bean id="jpaCallbackHandler" class="org.castor.jdo.jpa.info.JPACallbackHandler" />

6.7. Castor JPA Extensions

This section describes all JPA-extensions provided by Castor.

6.7.1. @Cache and @CacheProperty

In order to get the maximum out of the chosen built-in or external cache engine Castor provides a generic way
to specify properties in a vendor-independent way. Castor allows for cache-tuning on a per-entity basis by
simply providing key-value pairs with the @CacheProperty annotation in the @Cache container annnotation.

@Entity
@Cache({

@CacheProperty(key="type", value="ehcache"),
@CacheProperty(key="capacity", value="50")

})
@Table(name="Cache_limited")
public class LimitedCachingEntity implements CacheTestEntity {

private long id;
private String name;

@Id
public long getId() {

return id;
}

public void setId(final long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(final String name) {
this.name = name;

}

}

@Cache is based on Castor JDO and uses its default settings: 'count-limited' as cache type with a capacity of 30
entries.

Castor JDO - Support for the JPA specification

Castor (1.3.3) 286

Chapter 7. DDL generator for Castor JDO

7.1. Castor DDL Generator - An Introduction

Describes how to use the DDL Generator, and what features and options are currently supported.

Castor DDL Generator creates SQL scripts to drop/create tables, unique keys, sequences and so on based on the
input of a Castor JDO mapping file.

java org.castor.ddlgen.Main -m mapping.xml

This will generate the SQL script mapping.sql in the same directory mapping.xml is located.

7.1.1. DDL Generator Options

The DDL Generator has a number of different options which may be set. Some of them are specified at the
command line while others need to be configured through a property file. Most of the options are located in
global properties file org/castor/ddlgen/ddlgen.properties, but there are also some options that are
specific for one database engine. These DB-specific properties can be found at
org/castor/ddlgen/engine/<database>/<database>.properties.

7.1.1.1. Command Line Options

Table 7.1. Command line options

Option Args Description Optional?

m filename Castor JDO mapping file
to generate DDL for.

Required

o filename Name of file the
generated DDL will be
written to. If not specified
the generated DDL will
be written to a file named
similar as the Castor JDO
mapping source file with
xml extension being
replaced by sql.

Optional

e database engine Name of database engine
to generate DDL for. The
engine used as default
can be specified with
org.castor.ddlgen.DefaultEngine

option of global
properties file.

Optional

c filename Alternative global
properties file to be used

Optional

Castor (1.3.3) 287

Option Args Description Optional?

when generating DDL.

d filename Alternative database
specific properties file to
be used when generating
DDL.

Optional

h Shows help/usage
information.

Optional

7.1.2. Database Engines

The DDL Generator supports generation of SQL scripts for the following database engines:

Table 7.2. Description of the attributes

Name Database engine Property file

db2 DB/2 org/castor/ddlgen/engine/db2/db2.properties

derby Apache Derby org/castor/ddlgen/engine/derby/derby.properties

hsql Hypersonic SQL org/castor/ddlgen/engine/hsql/hsql.properties

mssql Microsoft SQL Server org/castor/ddlgen/engine/mssql/mssql.properties

mysql MySQL org/castor/ddlgen/engine/mysql/mysql.properties

oracle Oracle org/castor/ddlgen/engine/oracle/oracle.properties

pointbase Borland Pointbase org/castor/ddlgen/engine/pointbase/pointbase.properties

postgresql PostgreSQL org/castor/ddlgen/engine/postgresql/postgresql.properties

sapdb SAP DB / MaxDB org/castor/ddlgen/engine/sapdb/sapdb.properties

sybase Sybase org/castor/ddlgen/engine/sybase/sybase.properties

7.2. Using the Ant task for the Castor DDL Generator

Describes how to use the Ant task for the Castor DDL Generator and its features.

An alternative to using the command line as shown in the previous section, the Castor DDL Generator Ant
Task can be used to call the DDL generator for class generation. The only requirement is that the
castor-<version>-anttasks.jar must be made available to your Ant installation.

7.2.1. Configuration

Please find below the complete list of parameters that can be set on the Castor source generator.

Table 7.3.

DDL generator for Castor JDO

Castor (1.3.3) 288

Attribute Description Required?

file The name of the Castor JDO
mapping file to use as input for
DDL generation.

Yes

ddlFileName The name of the DDL file to be
generated.

Yes

databaseEngine The name of database engine to
generate DDL for.

Yes

globalProperties Name of a custom (global)
properties file to be used during
DDL generation.

No

databaseEngineProperties Name of a custom database
specific properties file to be used
during DDL generation.

No

Alternatively to specifying the file property, it is possible to work with a nested <FileSet> element or with the
dir property.

7.2.2. Example

Below is an example of how to use this task from within an Ant target definition named 'castor:ddl:src':

<target name="castor:ddl:src" depends="init"
description="Generate a DDL script from a JDO mapping file.">

<taskdef name="castor-ddlgen"
classname="org.castor.anttask.CastorDDLGenTask"
classpathref="castor.class.path" />

<mkdir dir="generated" />
<castor-ddlgen file="src/main/resources/mapping.xml"

ddlFileName="target/generated/ddl/mapping.sql"
databaseEngine="mysql"/>

</target>

7.3. Castor DDL Generator - Type Mapping

This section describes the mapping between Castor sql type java.sql.Types constant, java data type, sql type of
supported database.

Table 7.4.

Castor
Type

JDBC
Type

Java
Object
Type

MySQLPostgreSQLOracle Derby MSSQLSapDB DB2 Sybase HSQL PointBase

BIT BIT java.lang.BooleanTINYINT(1)BOOLEANBOOLEANCHAR
FOR
BIT
DATA

BIT BOOLEAN BIT BIT BOOLEAN

DDL generator for Castor JDO

Castor (1.3.3) 289

Castor
Type

JDBC
Type

Java
Object
Type

MySQLPostgreSQLOracle Derby MSSQLSapDB DB2 Sybase HSQL PointBase

TINYINTTINYINTjava.lang.ByteTINYINTSMALLINTSMALLINTSMALLINTTINYINTSMALLINTSMALLINTTINYINTTINYINTSMALLINT

SMALLINTSMALLINTjava.lang.ShortSMALLINTSMALLINTSMALLINTSMALLINTSMALLINTSMALLINTSMALLINTSMALLINTSMALLINTSMALLINT

INTEGERINTEGERjava.lang.IntegerINTEGERINTEGERINTEGERINTEGERINTEGERINTEGERINTEGERINTEGERINTEGERINTEGER

BIGINTBIGINTjava.lang.LongBIGINTBIGINTNUMERICBIGINTBIGINTINTEGERBIGINTINTEGERBIGINTNUMERIC

FLOAT FLOAT java.lang.DoubleFLOAT DOUBLE
PRECISION

FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT

DOUBLEDOUBLEjava.lang.DoubleDOUBLEDOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLEDOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLEDOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE
PRECISION

REAL REAL java.lang.FloatREAL REAL REAL REAL REAL DOUBLE
PRECISION

REAL REAL REAL REAL

NUMERICNUMERICjava.math.BigDecimalNUMERICNUMERICNUMERICNUMERICNUMERICNUMERICNUMERICNUMERICNUMERICNUMERIC

DECIMALDECIMALjava.math.BigDecimalDECIMALNUMERICDECIMALDECIMALDECIMALDECIMALDECIMALDECIMALDECIMALDECIMAL

CHAR CHAR java.lang.StringCHAR CHAR CHAR CHAR CHAR CHAR CHAR CHAR CHAR CHAR

VARCHARVARCHARjava.lang.StringVARCHARVARCHARVARCHAR2VARCHARVARCHARVARCHARVARCHARVARCHARVARCHARVARCHAR

DATE DATE java.sql.DateDATE DATE DATE DATE DATETIMEDATE DATE DATETIMEDATE DATE

TIME TIME java.sql.TimeTIME TIME DATE TIME DATETIMETIME TIME DATETIMETIME TIME

TIMESTAMPTIMESTAMPjava.sql.TimestampTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMPTIMESTAMP

BINARYBINARYbyte[] BINARYBYTEARAW CHAR
[n]
FOR
BIT
DATA

BINARYBLOB CHAR
[n]
FOR
BIT
DATA

BINARYBINARYBLOB

VARBINARYVARBINARYbyte[] VARBINARYBYTEALONG
RAW

VARCHAR
[]
FOR
BIT
DATA

VARBINARYBLOB VARCHAR
[]
FOR
BIT
DATA

VARBINARYVARBINARYBLOB

LONGVARBINARYLONGVARBINARYbyte[] VARBINARYBYTEALONG
RAW

LONG
VARCHAR
FOR
BIT
DATA

IMAGE BLOB LONG
VARCHAR
FOR
BIT
DATA

VARBINARYLONGVARBINARYBLOB

OTHEROTHERjava.lang.ObjectBLOB BYTEABLOB BLOB IMAGE BLOB BLOB IMAGE OTHERBLOB

JAVA_OBJECTJAVA_OBJECTjava.lang.ObjectBLOB BYTEABLOB BLOB IMAGE BLOB BLOB IMAGE OBJECTBLOB

BLOB BLOB java.io.InputStreamBLOB BYTEABLOB BLOB IMAGE BLOB BLOB IMAGE OBJECTBLOB

CLOB CLOB java.sql.ClobTEXT TEXT CLOB CLOB TEXT CLOB CLOB TEXT OBJECTCLOB

DDL generator for Castor JDO

Castor (1.3.3) 290

7.3.1. JDBC Types not supported by Castor

The following JDBC types are not supported by Castor yet.

• ARRAY

• DISTINCT

• REF

• STRUCT

7.4. Castor DDL Generator - Properties

Describes the properties available on the Castor DDL Generator.

7.4.1. Overview

At startup, the DDL Generator first evaluates the command line options. Next it loads the global properties on
the command line if specified, otherwise the default properties included with the DDL Generator. There are two
important properties loaded at startup:

org.castor.ddlgen.Generators
tells the DDL Generator about the supported database engines.

org.castor.ddlgen.DefaultEngine
The database engine for which to generate a SQL script. Can be overridden on the command line

The last step at startup is to read the specific configuration of the database engine being used. A custom
configuration can be provided on the command line to override the default.

7.4.2. Global properties

Please find below a list of global properties to control various advanced options of the DDL Generator.

Table 7.5. Command line options

Option Description Values Default Since

org.castor.ddlgen.GeneratorsGenerator classes of
supported database
engines.

1.1

org.castor.ddlgen.DefaultEngineName of default
database engine.
Will be overwritten
by engine specified
on commandline.

db2, derby, hsql,
mssql, mysql,
oracle, pointbase,
postgresql, sapdb or
sybase

mysql 1.1

org.castor.ddlgen.SchemaNameName of the test 1.1

DDL generator for Castor JDO

Castor (1.3.3) 291

Option Description Values Default Since

database schema.

org.castor.ddlgen.GroupStatementsHow to group
generated DDL
statements?

TABLE or
DDLTYPE

TABLE 1.1

org.castor.ddlgen.CharFormatHow to format
characters of
generated DDL
statements?

SENSITIVE,
UPPER or LOWER

SENSITIVE 1.1

org.castor.ddlgen.NewlineCharacter sequence
to write for newline.

\n 1.1

org.castor.ddlgen.IndentionCharacter sequence
to write for indented
lines.

\t 1.1

org.castor.ddlgen.GenerateSchemaGenerate SCHEMA
statements.

true or false true 1.1

org.castor.ddlgen.GenerateDropGenerate DROP
statements.

true or false true 1.1

org.castor.ddlgen.GenerateCreateGenerate CREATE
statements.

true or false true 1.1

org.castor.ddlgen.GeneratePrimaryKeyGenerate
PRIMARYKEY
statement.

true or false true 1.1

org.castor.ddlgen.GenerateForeignKeyGenerate
FOREIGNKEY
statement.

true or false true 1.1

org.castor.ddlgen.GenerateIndexGenerate INDEX
statements (Not
supported yet).

true or false false 1.1

org.castor.ddlgen.GenerateKeyGeneratorGenerate
KEYGENERATOR
statements.

true or false true 1.1

default_tinyint_precisionDefault precision of
tinyint values.

1.1

default_smallint_precisionDefault precision of
smallint values.

1.1

default_integer_precisionDefault precision of
integer values.

1.1

default_bigint_precisionDefault precision of
bigint values.

19 1.1

default_bigint_decimalsDefault decimals of
bigint values.

0 1.1

DDL generator for Castor JDO

Castor (1.3.3) 292

Option Description Values Default Since

default_float_precisionDefault precision of
float values.

38 1.1

Default precision of
tinyint values.

1.1

default_float_decimalsDefault decimals of
float values.

7 1.1

default_double_precisionDefault precision of
double values.

53 1.1

default_double_decimalsDefault decimals of
double values.

15 1.1

default_real_precisionDefault precision of
real values.

38 1.1

default_real_decimals Default decimals of
real values.

7 1.1

default_numeric_precisionDefault precision of
numeric values.

65 1.1

default_numeric_decimalsDefault decimals of
numeric values.

30 1.1

default_decimal_precisionDefault precision of
decimal values.

65 1.1

default_decimal_decimalsDefault decimals of
decimal values.

30 1.1

default_char_length Default length of
char values.

256 1.1

default_varchar_lengthDefault length of
varchar values.

256 1.1

default_longvarchar_lengthDefault length of
longvarchar values.

1024 1.1

default_date_precisionDefault precision of
date values.

1.1

default_time_precisionDefault precision of
time values.

1.1

default_timestamp_precisionDefault precision of
timestamp values.

19 1.1

default_binary_length Default length of
binary values.

256 1.1

default_varbinary_lengthDefault length of
varbinary values.

256 1.1

default_longvarbinary_lengthDefault length of
longvarbinary

1024 1.1

DDL generator for Castor JDO

Castor (1.3.3) 293

Option Description Values Default Since

values.

default_other_length Default length of
other values.

1024 1.1

default_javaobject_lengthDefault length of
javaobject values.

1024 1.1

default_blob_length Default length of
blob values.

1024 1.1

default_clob_length Default length of
clob values.

1024 1.1

7.4.2.1. Supported database engines

The supported database engines are defined as follows:

#
generator classes of supported database engines
#
org.castor.ddlgen.Generators=\
org.castor.ddlgen.engine.db2.Db2Generator,\
org.castor.ddlgen.engine.derby.DerbyGenerator,\
org.castor.ddlgen.engine.hsql.HsqlGenerator,\
org.castor.ddlgen.engine.mssql.MssqlGenerator,\
org.castor.ddlgen.engine.mysql.MysqlGenerator,\
org.castor.ddlgen.engine.oracle.OracleGenerator,\
org.castor.ddlgen.engine.pointbase.PointBaseGenerator,\
org.castor.ddlgen.engine.postgresql.PostgresqlGenerator,\
org.castor.ddlgen.engine.sapdb.SapdbGenerator,\
org.castor.ddlgen.engine.sybase.SybaseGenerator

7.4.2.2. Grouping of DDL statements

There are 2 supported modes to group DDL statements. For a simple example, the output of both modes is:

drop A if exist
create A(IDA int);
alter table A add primary key (IDA)

drop B if exist
create B(IDB int);
alter table B add primary key (IDB)

Figure 7.1. org.castor.ddlgen.GroupStatements=TABLE

drop A if exist
drop B if exist

create A(IDA int);
create B(IDB int);

alter table A add primary key (IDA)

DDL generator for Castor JDO

Castor (1.3.3) 294

alter table B add primary key (IDB)

Figure 7.2. org.castor.ddlgen.GroupStatements=DDLTYPE

7.4.3. Specific properties

Below you can find a list of specific properties to control various advanced options of the DDL Generator.

7.4.3.1. Properties common for all database engines

Table 7.6. Common properties for all databases

Option Description Values Default Since

org.castor.ddlgen.KeyGeneratorFactoriesKey generator
factory classes
supported by DB/2.

1.1

org.castor.ddlgen.HeaderCommentComment to add to
head of generated
script.

1.1

7.4.3.1.1. Key generators

The key generators supported by a database engine are defined as follows (example taken from Oracle):

#
key generator factory classes of supported database engines
#
org.castor.ddlgen.KeyGeneratorFactories=\
org.castor.ddlgen.keygenerator.HighLowKeyGeneratorFactory,\
org.castor.ddlgen.keygenerator.MaxKeyGeneratorFactory,\
org.castor.ddlgen.keygenerator.UUIDKeyGeneratorFactory,\
org.castor.ddlgen.engine.oracle.OracleSequenceKeyGeneratorFactory

7.4.3.2. Properties for db2, hsql, Oracle, Postgresql and sapdb

Table 7.7. Common properties for all databases

Option Description Values Default Since

org.castor.ddlgen.TriggerTemplateTemplate to create
TRIGGER
statements.

1.1

7.4.3.2.1. Trigger template

Below you can take a look at the default trigger template defined for Oracle. The DDL Generator will replace

DDL generator for Castor JDO

Castor (1.3.3) 295

the parameters in brackets with appropriate values (e.g. <table_name>).

#
trigger template
#
org.castor.ddlgen.TriggerTemplate=\
CREATE TRIGGER <trigger_name>
BEFORE INSERT OR UPDATE ON <table_name>
FOR EACH ROW
DECLARE
iCounter <table_name>.<pk_name>%TYPE;
cannot_change_counter EXCEPTION;

BEGIN
IF INSERTING THEN
Select <sequence_name>.NEXTVAL INTO iCounter FROM Dual;
:new.<pk_name> := iCounter;

END IF;

IF UPDATING THEN
IF NOT (:new.<pk_name> = :old.<pk_name>) THEN

RAISE cannot_change_counter;
END IF;

END IF;

EXCEPTION
WHEN cannot_change_counter THEN
raise_application_error(-20000, 'Cannot Change Counter Value');

END;

Figure 7.3. Default trigegr template for Oracle

7.4.3.3. Properties for MySQL only

Table 7.8. Common properties for all databases

Option Description Values Default Since

org.castor.ddlgen.engine.mysql.StorageEngineStorage engine to be
used. If left empty
the default
configured at the
database server will
be used.

MYISAM, InnoDB,
MERGE,
MEMORY, BDB or
ISAM

1.1

org.castor.ddlgen.engine.mysql.ForeignKeyOnDeleteStrategyDelete strategy for
foreign keys. If not
specified NO
ACTION will be
used by default.

CASCADE,
RESTRICT, SET
NULL, NO
ACTION

1.1

org.castor.ddlgen.engine.mysql.ForeignKeyOnUpdateStrategyUpdate strategy for
foreign keys. If not
specified NO
ACTION will be
used by default.

CASCADE,
RESTRICT, SET
NULL, NO
ACTION

1.1

DDL generator for Castor JDO

Castor (1.3.3) 296

Chapter 8. XML code generation - Extensions

8.1. XML code generation extensions - Motivation

With Castor 1.2 and earlier releases it has already been possible to generate Java classes from an XML schema
and use these classes for XML data binding without having to write a mapping file.

This is possible because the Castor XML code generator generated - in addition to the domain classes - a set of
XML descriptor classes as well, with one descriptor class generated per generated domain class. It's this XML
descriptor class that holds all the information required to map Java classes and/or field members to XML
artifacts, as set out in the original XML schema definitions. This includes

• artefact names

• XML namespace URIs

• XML namespace prefix

• validation code

Starting with Castor 1.3, a mechanism has been added to the XML code generator that allows extension of
these core offerings so that either additional content is added to the generated domain classes additonal
descriptor classes are gernated.

8.1.1. JDO extensions for the Castor XML code generator

8.1.1.1. JDO extensions - Motivation

With Castor 1.2 and previous releases it was already possible to generate Java classes from an XML schema
and use these classes for XML data binding without having to write a mapping file.

This is possible because the Castor XML code generator generated - in addition to the domain classes - a set of
XML descriptor classes as well, with one descriptor class generated per generated domain class. It's this XML
descriptor class that holds all the information required to map Java classes and/or field members to XML
artifacts, as set out in the original XML schema definitions. This includes

• artefact names

• XML namespace URIs

• XML namespace prefix

• validation code

In addition, it was already possible to use the generated set of domain classes in Castor JDO for
object-/relational mapping purpose by supplying a (manually written) JDO-specific mapping file. Whilst
technically not very difficult, this was still an error-prone task, especially in a context where tens or hundreds of
classes were generated from a set of XML schemas.

The JDO extensions for the Castor XML code generator extend the code generator in such a way that a second
set of descriptor classes is generated: the JDO descriptor classes. These new descriptor classes define the

Castor (1.3.3) 297

mapping between Java (domain) objects and database tables/columns, and as such remove the requirement of
having to write a JDO-specific mapping file.

Note

Please note that Castor JDO - upon startup - internally converts the information provided in the
JDO mapping file to (JDO) descriptor classes. As such, the approach outlined above simply re-uses
an existing code base and just automates the production of those descriptor classes.

The following sections introduce the general principles, define the XML schema artifacts available to annotate
an existing XML schema and highlight the usage of these artifacts by providing examples. At the same time, a
limited set of current product limitations are spelled out.

8.1.1.2. Limitations

With release 1.3 of Castor, the following limitations exist for the JDO extensions of the XML code generator:

1. The extensions currently can only be used in type mode of the XML code generator.

2. There's currently no support for key generators. There's work in progress to add this functionality, though.

3. There's currently no support for bidirectional relations, modelled through the use of <xs:id> and <xs:idref>
constructs.

8.1.1.3. Prerequisites

To facilitate the detailed explanations in the following sections, we now define a few <complexType>
definitions that we want to map against an existing database schema, and the corresponding SQL statements to
create the required tables.

8.1.1.3.1. Sample XML schemas

<complexType name="bookType">
<sequence>

<element name="isbn" type="xs:string" />
<element name="pages" type="xs:integer" />
<element name="lector" type="lectorType" />
<element name="authors" type="authorType" maxOccurs="unbounded" />

</sequence>
</complexType>

<complexType name="lectorType">
<sequence>

<element name="siNumber" type="xs:integer" />
<element name="name" type="xs:string" />

</sequence>
</complexType>

<complexType name="authorType">
<sequence>

<element name="siNumber" type="xs:integer" />
<element name="name" type="xs:string" />

</sequence>
</complexType>

8.1.1.3.2. Sample DDL statements

XML code generation - Extensions

Castor (1.3.3) 298

CREATE TABLE author_table (
sin INTEGER NOT NULL,
name VARCHAR(20) NOT NULL

);

CREATE TABLE lector_table (
sin INTEGER NOT NULL,
name VARCHAR(20) NOT NULL

);

CREATE TABLE book_table (
isbn VARCHAR(13) NOT NULL,
pages INTEGER,
lector_id INTEGER NOT NULL,
author_id INTEGER NOT NULL

);

8.1.1.4. Configuring the XML code generator

To have the Castor XML code generator generate JDO class descriptors when processing a set of XML
schemas, please use one of the following methods:

Table 8.1. Accessing options

Usage Method Description

SourceGenerator setJdoDescriptorCreation(boolean) Supply a value of true to enable
this feature.

SourceGeneratorMain Flag -gen-jdo-desc Set this optional flag to enable this
feature.

Ant task for XML code generator generateJdoDescriptors option Set this to a value of true.

8.1.1.5. The JDO annotations for XML schemas

This section enlists the XML artifacts available to annotate an existing XML schema with JDO
extension-specific information. These constructs are defined themselves in an XML schema
jdo-extensions.xsd that has a target namespace of http://www.castor.org/binding/persistence.

To enable proper validation of your XML schemas when editing JDO annotations, and to enable XML
completion in your preferred XML editor, please add schemaLocation information to your XML schema
definition as follows:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://your/target/namespace"
xmlns:jdo="http://www.castor.org/binding/persistence"
xmlns="http://your/target/namespace" ❶
xsi:schemaLocation="http://www.castor.org/binding/persistence http://www.castor.org/jdo-extensions.xsd">

...

</xs:schema>

where ...

❶ The values supplied in the schemaLocation attribute define the location of the XML schema for any XML
artefacts bound to the http://www.castor.org/binding/persistence namespace.

XML code generation - Extensions

Castor (1.3.3) 299

8.1.1.5.1. <table> element

The <table> element allows you to map an <complexType> definition to a database table within a database,
and to specify the identity (frequently referred to as primary key), as follows:

<xs:complexType name="authorType">
<xs:annotation>

<xs:appinfo>
<jdo:table name="author_table"> ❶

<jdo:primary-key> ❷
<jdo:key>siNumber</jdo:key>

</jdo:primary-key>
</jdo:table>

</xs:appinfo>
</xs:annotation>
<xs:sequence>

<xs:element name="siNumber" type="xs:integer" />
<xs:element name="name" type="xs:string" />

</xs:sequence>
</xs:complexType>

where ...

❶ The <jdo:table ...> defines the name of the database table to which the complex type definition
authorType should be mapped.

❷ The <jdo:primary-key> indicates which artifacts of the content model of the complex type definition
should be used as the corresponding object identity; in database terms, this is often referred to as primary
key.

Above example maps the complex type authorType to the table author_table, and specifies that the member
siNumber be used as object identity.

The XML schema definition for the <table> element is defined as follows:

<xs:element name="table">
<xs:complexType>

<xs:sequence>
<xs:element name="primaryKey" type="jdo:pkType"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="accessMode" use="optional" default="shared">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="read-only"/>
<xs:enumeration value="shared"/>
<xs:enumeration value="exclusive"/>
<xs:enumeration value="db-locked"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="detachable" type="xs:boolean" default="false"/>

</xs:complexType>
</xs:element>

<xs:complexType name="pkType">
<xs:sequence>

<xs:element name="key" type="xs:string" maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>

8.1.1.5.2. <column> element

XML code generation - Extensions

Castor (1.3.3) 300

The <column> element allows you to map a member of content model of a <complexType> definition to a
column within a database table.

<xs:complexType name="authorType">
<xs:annotation>

<xs:appinfo>
<jdo:table name="author_table">

<jdo:primary-key>
<jdo:key>siNumber</jdo:key>

</jdo:primary-key>
</jdo:table>

</xs:appinfo>
</xs:annotation>
<xs:sequence>

<xs:element name="siNumber" type="xs:integer" >
<xs:annotation>

<xs:appinfo>
<jdo:column name="sin" type="integer" /> ❶

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="name" type="xs:string" />

</xs:sequence>
</xs:complexType>

where

❶ Defines that the element definition siNumber be mapped against the database column sin, and that the
(database) type of this column is integer.

Above example maps the element isNumber to the database column sin, and specifies the database type to be
used for persistence (integer, in this case).

The XML schema definition for <column> is defined as follows:

<xs:element name="column">
<xs:complexType>

<xs:complexContent>
<xs:extension base="jdo:readonlyDirtyType">

<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="type" type="xs:string" use="required" />
<xs:attribute name="acceptNull" type="xs:boolean" use="optional"

default="true" />
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

where the content is described as follows:

Table 8.2. <column> - Definitions

Name Description

name Name of the column

type JDO-type of the column

acceptNull Whether this field accepts NULL values or not

XML code generation - Extensions

Castor (1.3.3) 301

8.1.1.5.3. <one-to-one> element

The <one-to-one> element allows you to map a member of content model of a <complexType> definition to a
1:1 relation to another <complexType>.

<xs:complexType name="bookType">
<xs:annotation>

<xs:appinfo>
<jdo:table name="book_type_table">

<jdo:primary-key>
<jdo:key>isbn</jdo:key>

</jdo:primary-key>
</jdo:table>

</xs:appinfo>
</xs:annotation>
<xs:sequence>

<xs:element name="isbn" type="xs:string" >
<xs:annotation>

<xs:appinfo>
<jdo:column name="isbn" type="varchar" />

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="pages" type="xs:integer" >

<xs:annotation>
<xs:appinfo>

<jdo:column name="pages" type="integer" />
</xs:appinfo>

</xs:annotation> ❶
</xs:element>
<xs:element name="lector" type="lectorType" >

<xs:annotation>
<xs:appinfo>

<jdo:one-to-one name="lector_id" />
</xs:appinfo>

</xs:annotation>
</xs:element>
<xs:element name="authors" type="authorType" maxOccurs="unbounded" >

...
</xs:element>

</xs:sequence>
</xs:complexType>

where

❶ Defines a 1:1 relation to another <complexType>, additionally providing the necessary foreign key
column at the database level.

Above example maps the element lector to a 1:1 relation to the complex type lectorType, and specifies the
(column name of the) foreign key to be used (lector_id in this case).

The XML schema definition for <one-to-one> is defined as follows:

<xs:element name="one-to-one">
<xs:complexType>

<xs:complexContent>
<xs:extension base="jdo:readonlyDirtyType">

<xs:attribute name="name" type="xs:string"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

where the content is described as follows:

XML code generation - Extensions

Castor (1.3.3) 302

Table 8.3. <one-to-one> - Definitions

Name Description

name Name of the column that represents the foreign key of
this relation

8.1.1.5.4. <one-to-many> element

The <one-to-many> element allows you to map a member of the content model of a <complexType> definition
as part of a 1:M relation to another <complexType>.

<xs:complexType name="bookType">
<xs:annotation>

<xs:appinfo>
<jdo:table name="book_type_table">

<jdo:primary-key>
<jdo:key>isbn</jdo:key>

</jdo:primary-key>
</jdo:table>

</xs:appinfo>
</xs:annotation>
<xs:sequence>

<xs:element name="isbn" type="xs:string" >
<xs:annotation>

<xs:appinfo>
<jdo:column name="isbn" type="varchar" />

</xs:appinfo>
</xs:annotation>

</xs:element>
<xs:element name="pages" type="xs:integer" >

<xs:annotation>
<xs:appinfo>

<jdo:column name="pages" type="integer" />
</xs:appinfo>

</xs:annotation>
</xs:element>
<xs:element name="lector" type="lectorType" >

<xs:annotation>
<xs:appinfo>

<jdo:one-to-one name="lector_id" />
</xs:appinfo>

</xs:annotation>
</xs:element>
<xs:element name="authors" type="authorType" maxOccurs="unbounded" >

<xs:annotation>
<xs:appinfo>

<jdo:one-to-many name="book_id" /> ❶
</xs:appinfo>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>

where

❶ Defines a 1:M relation to another <complexType>, additionally providing the necessary foreign key
column for the many member at the database level.

Above example maps the element authors as part of a 1:M relation to the complex type authorType, and
specifies the (column name of the) foreign key of the many member to be used (book_id in this case).

The XML schema definition for <one-to-many> is given as follows:

XML code generation - Extensions

Castor (1.3.3) 303

<xs:element name="one-to-many">
<xs:complexType>

<xs:complexContent>
<xs:extension base="jdo:readonlyDirtyType">

<xs:attribute name="name" type="xs:string" />
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

with the following details applying:

Table 8.4. <one-to-many> - Definitions

Name Description

name Name of the column that represents the (many)
foreign key of this relation

8.1.1.6. Using the generated (domain) classes with Castor JDO

Once you have generated domain classes and descriptor classes (both XML and JDO) from your set of XML
schemas, you'll be able to use them as are. There's a few minor changes, which we are going to highlight below,
but the main benefit is that you not have to write a JDO mapping file.

8.1.1.6.1. Empty mapping file

As you have already generated JDO descriptor classes for each of your domain objects, you won't have to
supply mappings for those classes anymore. As such, your mapping file will stay empty, as shown:

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"

"http://castor.org/mapping.dtd">
<mapping>

<!-- no mappings required -->
</mapping>

Note

Please note that you can of course supply mappings for those classes that stand outside of the
generation process from your XML schemas. It is possible, too, to match both modes. In other
words, a domain class mapped manually will be able to refer to a domain class as generated.

8.1.1.6.2. Use of a JDOClassDescriptorResolver

In order for Castor to be able to access the generated (JDO) class descriptors and to load those classes from the
file system, you will have to configure an instance of JDOClassDescriptorResolver and pass it to your
JDOManager instance when loading the JDO configuration.

The following example shows how to configure Castor JDO so that the classes generated from the sample
XML schema above can be used with CASTOR JDO seamlessly.

XML code generation - Extensions

Castor (1.3.3) 304

JDOClassDescriptorResolver resolver = new JDOClassDescriptorResolverImpl();
resolver.addClass(org.castor.jdo.extension.sample.BookType.class);
resolver.addClass(org.castor.jdo.extension.sample.LectorType.class);
resolver.addClass(org.castor.jdo.extension.sample.AuthorType.class);

InputSource jdoConfiguration =;
JDOManager.loadConfiguration(jdoConfiguration, null, null, resolver);

JDOManager jdoManager = JDOManager.createInstance("jdo-extensions");
...

Alternatively, if the classes generated from the sample XML schema shown above reside in the same package,
you can configure the JDOClassDescriptorResolver as follows:

JDOClassDescriptorResolver resolver = new JDOClassDescriptorResolverImpl();
resolver.addPackage("org.castor.jdo.extension.sample");
...

Tip

For the latter approach to work, you will have to make sure that the .castor.jdo.cdr files
generated alongside your domain (and descriptor classes) are included in your application
deployment units. If not, Castor JDO will not be able to load the descriptor classes from the file
system, and throw an exception.

8.1.2. SOLRJ extensions for the Castor XML code generator

8.1.2.1. SOLRJ extensions - Motivation

With Castor 1.2 and previous releases it was already possible to generate Java classes from an XML schema
and use these classes for XML data binding without having to write a mapping file.

This is possible because the Castor XML code generator generated - in addition to the domain classes - a set of
XML descriptor classes as well, with one descriptor class generated per generated domain class. It's this XML
descriptor class that holds all the information required to map Java classes and/or field members to XML
artifacts, as set out in the original XML schema definitions. This includes

• artefact names

• XML namespace URIs

• XML namespace prefix

• validation code

The SOLRJ extensions for the Castor XML code generator extend the code generator in such a way that the set
of domain classes is augmented with SOLRJ-specific @Field annotations.

The following sections introduce the general principles, define the XML schema artifacts available to annotate
an existing XML schema and highlight the usage of these artifacts by providing examples.

8.1.2.2. Prerequisites

XML code generation - Extensions

Castor (1.3.3) 305

To facilitate the detailed explanations in the following sections, we now define a few <complexType>
definitions that we want to be able to store in a SOLR index in addition to vanilla XML data binding
funtionality.

8.1.2.2.1. Sample XML schemas

<complexType name="bookType">
<sequence>

<element name="isbn" type="xs:string" />
<element name="pages" type="xs:integer" />

</sequence>
</complexType>

8.1.2.3. The SOLRJ annotations for XML schemas

This section enlists the XML artifacts available to annotate an existing XML schema with SOLRJ
extension-specific information. These constructs are defined themselves in an XML schema
solrj-extensions.xsd that has a target namespace of http://www.castor.org/binding/solrj.

To enable proper validation of your XML schemas when editing SOLRJ annotations, and to enable XML
completion in your preferred XML editor, please add schemaLocation information to your XML schema
definition as follows:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://your/target/namespace"
xmlns:solr="http://www.castor.org/binding/solrj"
xmlns="http://your/target/namespace"
xsi:schemaLocation="http://www.castor.org/binding/solrj http://www.castor.org/solrj-extens❶ions.xsd">

...

</xs:schema>

where ...

❶ The values supplied in the schemaLocation attribute define the location of the XML schema for any XML
artefacts bound to the http://www.castor.org/binding/solrj namespace.

8.1.2.3.1. <field> element

The <field> element allows you to map a member of the content model of a <complexType> definition to
SOLRJ field.

<complexType name="bookType">
<sequence>

<element name="isbn" type="xs:string">
<xs:annotation>

<xs:appinfo>
<solrj:field name="id" /> ❶

</xs:appinfo>
</xs:annotation>

</element>
<element name="pages" type="xs:integer">

<xs:annotation>
<xs:appinfo>

<solrj:field /> ❷
</xs:appinfo>

</xs:annotation>

XML code generation - Extensions

Castor (1.3.3) 306

</element>
</sequence>

</complexType>

where

❶ Defines that the element definition isbn be mapped against the SOLRJ field id.
❷ Defines that the element definition name be mapped to the SOLRJ field name.

Above example maps the element isbn to the SOLR index field id, and the element name to the
identically-named SOLR index field. Please note that a SOLR index field name does not have to be specified if
the field name and the Java property name are identical.

Above complex type definition will be transformed to the corresponding Java property definitions (within a
class):

public class BookType {

@Field("id")
private String isbn;

@Field
private long pages;

}

The XML schema definition for <field> is defined as follows:

<xs:element name="field">
<xs:annotation>

<xs:documentation>
Element 'field' is used to specify the use of the SOLRJ
@Field annotation.

</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:attribute name="name" type="xs:string" use="optional">
<xs:annotation>

<xs:documentation>
Attribute 'name' is used to specify the name of
the index field to be mapped against; if not used,
the name of the Java property will be used as filed
name.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

</xs:element>

where the content is described as follows:

Table 8.5. <field> - Definitions

Name Description Optional?

name Name of the SOLR index field. Yes

8.1.2.4. Using the generated domain classes with SOLR

XML code generation - Extensions

Castor (1.3.3) 307

Once you have generated domain classes (and descriptor classes for the XML binding) from your set of XML
schemas, you'll be able to use them as are.

XML code generation - Extensions

Castor (1.3.3) 308

	Castor 1.3.3 - Reference documentation
	Table of Contents
	Chapter 1. Castor XML - XML data binding
	1.1. XML framework
	1.1.1. Introduction
	1.1.2. Castor XML - The XML data binding framework
	1.1.2.1. Introspection mode
	1.1.2.2. Mapping mode
	1.1.2.3. Descriptor mode

	1.1.3. Sources and destinations
	1.1.4. XMLContext - A consolidated way to bootstrap Castor
	1.1.5. Using existing Classes/Objects
	1.1.6. Class Descriptors
	1. Compile-Time Descriptors
	2. Run-Time Descriptors

	1.2. XML Mapping
	1.2.1. Introduction
	1.2.2. Overview
	1.2.2.1. Marshalling Behavior
	1.2.2.2. Unmarshalling Behavior

	1.2.3. The Mapping File
	1.2.3.1. Sample domain objects
	1.2.3.2. The <mapping> element
	1.2.3.3. The <class> element
	1.2.3.3.1. Sample <class> mappings

	1.2.3.4. The <map-to> element
	1.2.3.4.1. <map-to> samples

	1.2.3.5. The <field> element
	1.2.3.6. Description of the content
	1.2.3.6.1. Mapping constructor arguments (since 0.9.5)
	1.2.3.6.2. Sample 1: Defining a custom field handler
	1.2.3.6.3. Sample 2: Defining a custom configurable field handler
	1.2.3.6.4. Sample 3: Using the container attribute

	1.2.3.7. The <bind-xml> element
	1.2.3.7.1. Grammar
	1.2.3.7.1.1. Definiton

	1.2.3.7.2. Nested class mapping

	1.2.4. Usage Pattern
	1.2.5. xsi:type
	1.2.6. Location attribute
	1.2.7. Tips
	1.2.7.1. Automatically create a mapping file
	1.2.7.2. Create your own FieldHandler
	1.2.7.3. Mapping constructor arguments (since 0.9.5)
	1.2.7.4. Preventing Castor from checking for a default constructor (since 0.9.5)
	1.2.7.5. Type safe enumeration mapping (since 0.9.5)

	1.3. Configuring Castor XML (Un)Marshaller
	1.3.1. Introduction
	1.3.2. Configuring the Marshaller
	1.3.3. Configuring the Unmarshaller

	1.4. Usage of Castor and XML parsers
	1.4.1. SAX/DOM
	1.4.2. StAX

	1.5. XML configuration file
	1.5.1. News
	1.5.2. Introduction
	1.5.3. Accessing the properties from within code

	1.6. Castor XML - Tips & Tricks
	1.6.1. Logging and Tracing
	1.6.2. Indentation
	1.6.3. XML:Marshal validation
	1.6.4. NoClassDefFoundError
	1.6.5. Mapping: auto-complete
	1.6.6. Create method
	1.6.7. MarshalListener and UnmarshalListener

	1.7. Castor XML: Writing Custom FieldHandlers
	1.7.1. Introduction
	1.7.2. Writing a simple FieldHandler
	1.7.3. Writing a GeneralizedFieldHandler
	1.7.4. Use ConfigurableFieldHandler for more flexibility
	1.7.5. Reuse a ConfigurableFieldHandler for more than one field definition
	1.7.6. No Constructor, No Problem!
	1.7.7. Collections and FieldHandlers

	1.8. Best practice
	1.8.1. General
	1.8.1.1. Source Generator

	1.8.2. Performance Considerations
	1.8.2.1. General
	1.8.2.2. Use of XMLContext - With and without a mapping file
	1.8.2.3. Use of Marshaller/Unmarshaller
	1.8.2.3.1. Use of ClassDescriptorResolver
	1.8.2.3.2. Use of ClassDescriptorResolver for pre-loading compiled descriptors

	1.9. Castor XML - HOW-TO's
	1.9.1. Introduction
	1.9.2. Documentation
	1.9.3. Contribution
	1.9.4. Mapping
	1.9.5. Validation
	1.9.6. Source generation
	1.9.7. Others

	1.10. XML FAQ
	1.10.1. General
	1.10.1.1. How do I set the encoding?
	1.10.1.2. I'm getting an error about 'xml' prefix already declared?
	1.10.1.3. Why is my 'get' method called twice?
	1.10.1.4. How can I speed up marshalling/unmarshalling performance?
	1.10.1.5. How do I ignore elements during unmarshalling?
	1.10.1.6. Where does Castor search for the castor.properties file?
	1.10.1.7. Can I programmatically change the properties found in the castor.properties file?

	1.10.2. Introspection
	1.10.2.1. Can private methods be introspected?

	1.10.3. Mapping
	1.10.3.1. My mapping file seems to have no effect!
	1.10.3.2. Are there any tools to automatically create a mapping file?
	1.10.3.3. How do I specify a namespace in the mapping file?
	1.10.3.4. How do I prevent a field from being marshaled?

	1.10.4. Marshalling
	1.10.4.1. The XML is marshalled on one line, how do I force line-breaks?
	1.10.4.2. What is the order of the marshalled XML elements?

	1.10.5. Source code generation
	1.10.5.1. Can I use a DTD with the source generator?
	1.10.5.2. My XML output looks incorrect, what could be wrong?
	1.10.5.3. The generated source code has incorrect or missing imports for imported schema types
	1.10.5.4. How can I make the generated source code more JDO friendly?

	1.10.6. Miscellaneous
	1.10.6.1. Is there a way to automatically create an XML Schema from an XML instance?
	1.10.6.2. How to enable XML validation with Castor XML
	1.10.6.3. Why is mapping ignored when using a FieldHandlerFactory

	1.10.7. Serialization
	1.10.7.1. Is it true that the use of Castor XML mandates Apache Xerces as XML parser?
	1.10.7.2. Do I still have to download Xerces when using Castor XML with Java 5.0?

	Chapter 2. XML code generation
	2.1. Why Castor XML code generator - Motivation
	2.2. Introduction
	2.2.1. News
	2.2.1.1. Source generation & Java field naming conventions
	2.2.1.2. Source generation & Java 5.0

	2.2.2. Introduction
	2.2.3. Invoking the XML code generator
	2.2.4. XML Schema

	2.3. Properties
	2.3.1. Overview
	2.3.2. Customization - Lookup mechanism
	2.3.3. Detailed descriptions
	2.3.3.1. Source generation & Java 5.0
	2.3.3.2. SimpleType Enumerations
	2.3.3.2.1. Unmarshalling of complex enums
	2.3.3.2.2. Marshalling of complex enums
	2.3.3.2.3. Source Generation of complex enums

	2.3.3.3. Bound Properties
	2.3.3.4. Class Creation/Mapping
	2.3.3.5. Setting a super class
	2.3.3.6. Mapping XML namespaces to Java packages
	2.3.3.7. Generate equals()/hashCode() method
	2.3.3.8. Use CycleBreaker for generation of equals()/hashcode() methods.
	2.3.3.9. Maps java primitive types to wrapper object
	2.3.3.10. Automatic class name conflict resolution
	2.3.3.11. Extra collection methods
	2.3.3.12. Class printing
	2.3.3.13. Extra documentation methods

	2.4. Custom bindings
	2.4.1. Binding File
	2.4.1.1. <binding> element
	2.4.1.2. <include> element
	2.4.1.3. <package> element
	2.4.1.4. <namingXML> element
	2.4.1.5. <componentBinding> element
	2.4.1.5.1. Name
	2.4.1.5.2. Embedded definitions

	2.4.1.6. <java-class>
	2.4.1.7. <member> element
	2.4.1.8. <contentMember> element
	2.4.1.9. <enumBinding> element
	2.4.1.10. Not implemented yet
	2.4.1.10.1. <javadoc>
	2.4.1.10.2. <interface> element

	2.4.2. Class generation conflicts
	2.4.2.1. Collision reporting
	2.4.2.1.1. Reporting mode 'warnViaConsoleDialog'

	2.4.2.2. Automatic collision resolution
	2.4.2.2.1. Selecting the strategy
	2.4.2.2.2. 'XPATH' strategy
	2.4.2.2.3. 'TYPE' strategy
	2.4.2.2.4. Conflicts covered

	2.5. Invoking the XML code generator
	2.5.1. Ant task
	2.5.1.1. Specifying the source for generation
	2.5.1.2. Parameters
	2.5.1.3. Examples
	2.5.1.3.1. Using a file
	2.5.1.3.2. Using an URL
	2.5.1.3.3. Using a nested <fileset>

	2.5.2. Maven 2 plugin
	2.5.2.1. Configuration
	2.5.2.2. Integration into build life-cycle
	2.5.2.3. Example

	2.5.3. Command line
	2.5.3.1. First steps
	2.5.3.2. Source Generator - command line options
	2.5.3.2.1. Specifying the input source
	2.5.3.2.2. Other command Line Options
	2.5.3.2.2.1. Collection Types

	2.6. XML schema support
	2.6.1. Supported XML Schema Built-in Datatypes
	2.6.1.1. Primitive Datatypes
	2.6.1.2. Derived Datatypes

	2.6.2. Supported XML Schema Structures
	2.6.2.1. Groups
	2.6.2.2. Wildcard

	2.7. Examples
	2.7.1. The invoice XML schema
	2.7.1.1. The schema file
	2.7.1.2. Running the XML code generator
	2.7.1.3. The generated code
	2.7.1.3.1. The Item.java class
	2.7.1.3.2. The PriceType.java class
	2.7.1.3.3. The Invoice.java class

	2.7.2. Non-trivial real world example
	2.7.2.1. The Supply Chain XSD
	2.7.2.2. Binding file? -- IT IS REQUIRED!

	Chapter 3. Castor JDO
	3.1. Castor JDO - An introduction
	3.1.1. What is Castor JDO
	3.1.2. Features

	3.2. Castor JDO - First steps
	3.2.1. Introduction
	3.2.2. Sample domain objects
	3.2.3. Using Castor JDO for the first time
	3.2.4. JDO configuration

	3.3. Using Castor JDO
	3.3.1. Opening A JDO Database
	3.3.1.1. Stand-alone application
	3.3.1.2. J2EE Application

	3.3.2. Using A JDO Database to perform persistence operations
	3.3.2.1. Transient And Persistent Objects
	3.3.2.2. Running an OQL Query
	3.3.2.3. Creating a persistent object
	3.3.2.4. Removing a persistent object
	3.3.2.5. Updating a persistent object

	3.3.3. Using JDO And XML

	3.4. Castor JDO - Configuration
	3.4.1. The Castor configuration file
	3.4.1.1. Transaction demarcation
	3.4.1.1.1. Local Mode
	3.4.1.1.2. Global Mode

	3.4.1.2. Sample Configuration File
	3.4.1.3. Prepared statement pooling
	3.4.1.4. Sample configurations for various databases
	3.4.1.4.1. Sybase JConnect (JDBC data source)
	3.4.1.4.2. PostgreSQL (JDBC data source)
	3.4.1.4.3. Oracle (JDBC Driver)
	3.4.1.4.4. mySQL (JDBC Driver)
	3.4.1.4.5. InstantDB

	3.4.2. JDOConfFactory - A programmatic way of configuring Castor JDO
	3.4.3. References
	3.4.3.1. The JDO Configuration DTD

	3.5. Type Support
	3.5.1. Types
	3.5.1.1. Castor XML
	3.5.1.2. Castor JDO
	3.5.1.3. Castor DAX

	3.5.2. The Field Mapping
	3.5.3. SQL Dates and Default Timezones
	3.5.4. SQL Type Conversion
	3.5.5. Parameterized Type Convertors
	3.5.6. BLOB and CLOB Types

	3.6. Castor JDO Mapping
	3.6.1. News
	3.6.2. Introduction
	3.6.3. The Mapping File
	3.6.3.1. The <mapping> element
	3.6.3.2. The <class> element
	3.6.3.3. The <map-to> element
	3.6.3.4. The <field> element
	3.6.3.5. The <sql> element

	3.7. Castor JDO FAQ
	3.7.1. Castor's relation to other specifications
	3.7.1.1. Does Castor JDO comply with the SUN JSR-000012 specification?
	3.7.1.2. Is Castor JDO better than EJB CMP?

	3.7.2. XML related questions
	3.7.2.1. Is it possible to make XML marshalling transactionally using Castor?
	3.7.2.2. Is it possible to do queries on a XML file using Castor?

	3.7.3. Technical questions
	3.7.3.1. Where can I find some examples to start with?
	3.7.3.2. I have encountered problems using Sun JDBC-ODBC bridge with Castor...
	3.7.3.3. My get-method for the Collection of dependent objects returns null. Why?
	3.7.3.4. Should my JDO classes implement some special interface?
	3.7.3.5. Can Castor automatically create/remove related objects?
	3.7.3.6. Is Castor JDO using any connection pooling mechanism to improve the overall performance?
	3.7.3.7. I am getting ClassNotFoundException for my JDO class, but it is in the class path. Why?
	3.7.3.8. I am getting exception 'the class ... is not persistence capable...'. Why?
	3.7.3.9. I call db.remove() on the dependent object and commit, but this doesn't work...
	3.7.3.10. How should I represent string/date/boolean literals in OQL query?
	3.7.3.11. I get 'java.lang.AbstractMethodError: getBigDecimal' for numeric fields. Why?
	3.7.3.12. Does Castor support both one-way and two-way relationships?
	3.7.3.13. I have an object that holds a relation to itself. Does Castor support this?
	3.7.3.14. Why do I get an ObjectModifiedException when trying to commit a transaction?
	3.7.3.15. I'm receiving a java.sql.SQLException: ORA-01461

	3.7.4. Castor and performance caches
	3.7.4.1. Sometimes long transaction fails: on update() it is thrown ObjectModifiedException. Why?
	3.7.4.2. Can I use the cache-type='none' with long transactions?
	3.7.4.3. What is causing a PersistenceException with long transactions and how do I fix it?

	3.7.5. OQL
	3.7.5.1. Is there any document available for Castor OQL?
	3.7.5.2. The OQL document describes several phases of development. Which is the current phase?
	3.7.5.3. Does Castor OQL support sub-queries?
	3.7.5.4. I cannot get Castor OQL to join two objects for me. Is it supported?
	3.7.5.5. Can I write a pass-thru OQL?
	3.7.5.6. Does Castor OQL support struct?
	3.7.5.7. How do I structure a query using the 'LIKE' expression?
	3.7.5.8. Does Castor support the SQL 'IN' expression?

	3.7.6. Features requests
	3.7.6.1. Can a foreign key be part of multiple primary keys?
	3.7.6.2. Is polymorphic collection supported?

	3.7.7. Data model issues
	3.7.7.1. Is it possible to map an object to more than one tables?
	3.7.7.2. Can an object with the same identity be re-created after being removed in the same transaction?
	3.7.7.3. What is a dependent object?
	3.7.7.4. Can a data object involved in many-to-many relationship be dependent?

	3.7.8. Castor JDO design
	3.7.8.1. How does Castor JDO work anyway?
	3.7.8.2. Does Castor support two-phase commits? How is this implemented?
	3.7.8.3. Does Castor support nested transaction?

	3.7.9. Working with open source databases
	3.7.9.1. Does Castor support PosgreSQL?
	3.7.9.2. Does Castor support MySQL?
	3.7.9.3. Which Open Source database is supported better?

	3.7.10. RDBMS-specific issues
	3.7.10.1. MySQL
	3.7.10.1.1. Use of DATETIME fields in general
	3.7.10.1.2. Use of TIMESTAMP fields & NULLs in long transactions
	3.7.10.1.3. MySQL 4.1.x and upgrade issues

	3.7.10.2. Oracle
	3.7.10.2.1. Oracle & (C|B)LOB fields

	3.7.11. Castor & Logging
	3.7.11.1. How can I integrate Castor's logging with a logging infrastructure using Log4J?
	3.7.11.2. Can I see what SQL statement Castor issues to the database as a result of an operation?
	3.7.11.3. How can I disable the use of JDBC proxy classes?

	3.7.12. Lazy Loading related questions
	3.7.12.1. How do I configure the JDO mapping to use the lazy loading feature for 1:1 relations?
	3.7.12.2. Lazy loading for 1:1 relations and serialization
	3.7.12.3. How do I configure the JDO mapping to use the lazy loading feature for 1:m and M:N relations?
	3.7.12.4. I have modified my mapping to use lazy loading. Now I get the error 'no method to set value for field: com.xyz.ClassB in class: ClassMolder com.xyz.ClassA' or 'org.exolab.castor.jdo.DataObjectAccessException: no method to set value for field: com.xyz.ClassB in class: ClassMolder com.xyz.ClassA'. What am I doing wrong?

	3.7.13. Tuning for LOBs
	3.7.14. Database-specific issues
	3.7.14.1. HSQL and identity key generators

	3.7.15. Changing database configurations

	3.8. Castor JDO code samples
	3.8.1. Introduction
	3.8.1.1. Java class files
	3.8.1.2. DDL
	3.8.1.3. Object Mappings
	3.8.1.3.1. Read-only fields
	3.8.1.3.2. Transient fields

	3.8.1.4. Relations
	3.8.1.4.1. 1:1 relation
	3.8.1.4.2. 1:M relation
	3.8.1.4.3. M:N relation

	3.8.1.5. Extend relation & polymorphism
	3.8.1.6. OQL samples

	3.9. Castor JDO - How To's
	3.9.1. Introduction
	3.9.2. Documentation
	3.9.2.1. How to author a HOW-TO document
	3.9.2.2. How to author an FAQ entry
	3.9.2.3. How to author a code snippet
	3.9.2.4. How to author core documentation

	3.9.3. Contribution
	3.9.3.1. How to setup Castor project in eclipse
	3.9.3.1.1. Introduction
	3.9.3.1.2. Prerequisites
	3.9.3.1.3. Create Project
	3.9.3.1.4. Troubleshooting

	3.9.3.2. How to run Castor JDO's database independend unit tests
	3.9.3.2.1. Overview
	3.9.3.2.2. Prerequisites
	3.9.3.2.3. Execute tests in eclipse
	3.9.3.2.4. References

	3.9.3.3. How to run Castor JDO's test suite
	3.9.3.3.1. Overview
	3.9.3.3.2. Intended Audience
	3.9.3.3.3. Prerequisites
	3.9.3.3.4. 2 versions of CTF
	3.9.3.3.5. Steps to setup environment for old CTF
	3.9.3.3.6. Steps to run old CTF from commandline
	3.9.3.3.7. Steps to run old CTF out of eclipse
	3.9.3.3.8. Short description of the old CTF tests
	3.9.3.3.9. Steps to setup environment for new CTF
	3.9.3.3.10. Steps to run new CTF out of eclipse
	3.9.3.3.11. Troubleshooting
	3.9.3.3.12. References

	3.9.3.4. How to run Castor JDO's performance tests
	3.9.3.4.1. Overview
	3.9.3.4.2. Prerequisites
	3.9.3.4.3. Steps to setup environment for old CTF
	3.9.3.4.4. Steps to execute performance tests in eclipse
	3.9.3.4.5. References

	3.9.3.5. Submitting a bug report
	3.9.3.5.1. Submitting a problem report
	3.9.3.5.1.1. Driver
	3.9.3.5.1.2. Introduction
	3.9.3.5.1.3. Templates
	3.9.3.5.1.4. Add your test case to the master test suite
	3.9.3.5.1.5. Creating the patch
	3.9.3.5.1.6. References

	3.9.3.6. How to prepare a patch
	3.9.3.6.1. Overview
	3.9.3.6.2. Intended Audience
	3.9.3.6.3. Prerequisites
	3.9.3.6.4. Steps
	3.9.3.6.4.1. Understand what a patch is
	3.9.3.6.4.2. Modify your document and ensure consistency
	3.9.3.6.4.3. Get ready
	3.9.3.6.4.4. Generate the differences
	3.9.3.6.4.5. Describe the patch
	3.9.3.6.4.6. Submit via Jira

	3.9.3.6.5. Real World Extension
	3.9.3.6.5.1. Multiple diffs in a single patch
	3.9.3.6.5.2. Other ways of obtaining source for diff comparison

	3.9.3.6.6. Tips
	3.9.3.6.7. References

	3.9.3.7. How to Contribute a Patch via Jira

	3.9.4. OQL
	3.9.4.1. How to use a LIMIT clause with OQL
	3.9.4.1.1. Overview
	3.9.4.1.2. Intended Audience
	3.9.4.1.3. Prerequisites
	3.9.4.1.4. Steps
	3.9.4.1.4.1. Compose an OQL statement to obtain all ProductGroup instances
	3.9.4.1.4.2. Add LIMIT clause to OQL statement
	3.9.4.1.4.3. Add OFFSET clause to OQL statement

	3.9.4.1.5. Limitations
	3.9.4.1.6. Tips
	3.9.4.1.7. References

	3.9.5. Core features
	3.9.5.1. How to use a (performance) cache with Castor
	3.9.5.1.1. Intended Audience
	3.9.5.1.2. Prerequisites
	3.9.5.1.3. Steps
	3.9.5.1.3.1. Add <cache-type> element to class mapping

	3.9.5.1.4. Tips
	3.9.5.1.5. References

	3.9.5.2. How to map typesafe enumerations with Castor
	3.9.5.2.1. Intended Audience
	3.9.5.2.2. Prerequisites
	3.9.5.2.3. Steps
	3.9.5.2.4. Tips

	3.9.5.3. How to use Castor JDO's connection proxies
	3.9.5.3.1. Introduction
	3.9.5.3.2. Intended Audience
	3.9.5.3.3. Prerequisites
	3.9.5.3.4. Steps
	3.9.5.3.4.1. Enable the use of the JDBC proxy classes

	3.9.5.3.5. References

	3.9.6. Cascading
	3.9.6.1. How to use cascading operations
	3.9.6.1.1. Overview
	3.9.6.1.2. Intended Audience
	3.9.6.1.3. Prerequisites
	3.9.6.1.4. Use of the cascading attribute
	3.9.6.1.5. Values for the cascading attribute
	3.9.6.1.6. References

	3.9.6.2. How to cascade creation
	3.9.6.2.1. Overview
	3.9.6.2.2. Enabling cascading creation
	3.9.6.2.3. Scenarios
	3.9.6.2.3.1. db.create()
	3.9.6.2.3.2. db.commit()
	3.9.6.2.3.3. Cascading create and collections

	3.9.6.2.4. See also

	3.9.6.3. How to cascade deletion
	3.9.6.3.1. Overview
	3.9.6.3.2. Enabling cascading deletion
	3.9.6.3.3. Scenarios
	3.9.6.3.3.1. db.remove()

	3.9.6.3.4. See also

	3.9.6.4. How to cascade update
	3.9.6.4.1. Overview
	3.9.6.4.2. Enabling cascading update
	3.9.6.4.3. Scenarios
	3.9.6.4.3.1. db.update()

	3.9.6.4.4. Limitations
	3.9.6.4.5. See also

	3.9.7. Caches
	3.9.7.1. How to use Castor in a J2EE cluster
	3.9.7.1.1. Introduction
	3.9.7.1.2. Intended Audience
	3.9.7.1.3. Prerequisites
	3.9.7.1.4. Steps
	3.9.7.1.4.1. Add <cache-type> element to class mapping
	3.9.7.1.4.2. Add Coherence JARs to CLASSPATH

	3.9.7.1.5. References

	3.9.8. Connection pooling
	3.9.8.1. How to use Jakarta's DBCP for connection pooling
	3.9.8.1.1. Introduction
	3.9.8.1.2. Intended audience
	3.9.8.1.3. Steps
	3.9.8.1.3.1. Configuration

	3.9.8.1.4. References

	3.9.9. Use of Castor in J2EE applications
	3.9.9.1. How to use Castor with(in) distributed J2EE transactions
	3.9.9.1.1. Overview
	3.9.9.1.2. Intended audience
	3.9.9.1.3. Steps
	3.9.9.1.3.1. Make Castor participate in a J2EE transaction
	3.9.9.1.3.2. Make Castor participate in container-managed J2EE transaction
	3.9.9.1.3.3. Resource enlisting

	3.9.9.1.4. Tips
	3.9.9.1.5. References

	3.9.10. Database specifica
	3.9.10.1. How to connect to a Apache Derby instance in network server mode

	3.10. Castor JDO - Tips & Tricks
	3.10.1. Logging and Tracing
	3.10.2. Access Mode
	3.10.3. Inheritence
	3.10.4. Views of Same Object
	3.10.5. Upgrading Locks
	3.10.6. NoClassDefFoundError
	3.10.7. Create method

	3.11. Castor JDO - Advanced features
	3.11.1. Introduction
	3.11.2. Caching
	3.11.3. Dependent and related relationships
	3.11.4. Different cardinalities of relationship
	3.11.5. Lazy Loading
	3.11.5.1. 1:1 relations
	3.11.5.2. 1:M and M:N relations

	3.11.6. Multiple columns primary keys
	3.11.7. Callback interface for persistent operations

	3.12. Running the self-executable Castor JDO examples
	3.12.1. Download the castor-$RELEASE-examples.zip archive
	3.12.2. Unpack the ZIP file
	3.12.3. Running the Castor JDO samples
	3.12.4. What happens
	3.12.5. Hints

	Chapter 4. Advanced JDO
	4.1. Castor JDO - Caching
	4.1.1. Introduction
	4.1.2. Caching and long transactions
	4.1.3. Configuration
	4.1.4. fifo and lru cache providers
	4.1.5. Caching and clustered environments
	4.1.6. Custom cache provider
	4.1.6.1. Cache implementation
	4.1.6.2. CacheFactory implementation
	4.1.6.3. Configuration

	4.1.7. CacheManager - monitoring and clearing caches

	4.2. OQL to SQL translator
	4.2.1. News
	4.2.2. Status
	4.2.3. Introduction
	4.2.4. Overview
	4.2.5. Syntax
	4.2.6. Type and validity checking
	4.2.7. SQL Generation
	4.2.8. OQL FAQ
	4.2.9. Summary
	4.2.10. Examples
	4.2.10.1. Java class files
	4.2.10.2. Limit Clause

	4.3. Transaction And Locking Modes
	4.3.1. The JDO Model
	4.3.2. Locking Modes
	4.3.2.1. Access mode: Shared
	4.3.2.2. Access mode: Exclusive
	4.3.2.3. Access mode: Database Locked
	4.3.2.4. Read-only Queries

	4.3.3. Visibility of Changes

	4.4. Castor Persistence Architecture
	4.4.1. Layered Achitecture
	4.4.2. Persistence API
	4.4.2.1. Transactions
	4.4.2.2. OIDs and Locks
	4.4.2.3. Cache Engine
	4.4.2.4. Pessimistic/Optimistic Locking
	4.4.2.5. Relations
	4.4.2.6. QueryResults

	4.4.3. Service Providers (SPI)
	4.4.3.1. Persistence
	4.4.3.2. PersistenceQuery

	4.4.4. Enterprise JavaBeans CMP

	4.5. Castor JDO Key Generator Support
	4.5.1. Introduction
	4.5.2. MAX key generator
	4.5.3. HIGH-LOW key generator
	4.5.4. UUID key generator
	4.5.5. IDENTITY key generator
	4.5.6. SEQUENCE key generator

	4.6. Castor JDO Long Transactions Support
	4.6.1. Introduction
	4.6.2. Bounded dirty checking
	4.6.3. Long transactions that do not depend on cache

	4.7. Nested Attributes
	4.7.1. Introduction
	4.7.2. Application types
	4.7.3. Compound types

	4.8. Using Pooled Database Connections
	4.8.1. News
	4.8.2. Pooling Agents
	4.8.3. Standard Database Connections
	4.8.4. Pooling and JDBC DataSources
	4.8.4.1. PostgreSQL 7.3 and later
	4.8.4.2. Oracle
	4.8.4.3. mySQL

	4.8.5. Configuring JDBC DataSources in Tomcat to be used with Castor
	4.8.6. Jakarta Commons DBCP - BasicDataSource
	4.8.6.1. Prepared statement pooling

	4.9. Blobs in PostgreSQL
	4.9.1. OID Support
	4.9.2. OID Example

	4.10. Castor JDO - Best practice
	4.10.1. Introduction
	4.10.2. General suggestions
	4.10.3. Further optimization

	Chapter 5. Castor JDO - Integration with Spring ORM
	5.1. Usage
	5.1.1. Getting started using Maven 2
	5.1.2. Project dependencies

	5.2. A high-level overview
	5.2.1. Sample domain objects
	5.2.2. Using Castor JDO manually
	5.2.3. Using Castor JDO with Spring ORM - Without CastorTemplate
	5.2.4. Using Castor JDO with Spring ORM - With CastorTemplate
	5.2.5. Using Castor JDO with Spring ORM - With CastorDaoSupport

	5.3. Data access through Castor JDO with the Spring framework
	5.3.1. Resource management
	5.3.2. JDOManager setup in a Spring container
	5.3.3. The CastorTemplate
	5.3.4. Implementing Spring-based DAOs without callbacks
	5.3.5. Programmatic transaction demarcation
	5.3.6. Declarative transaction demarcation
	5.3.7. Transaction management strategies

	5.4. Build instructions
	5.4.1. Prerequisites
	5.4.2. Building the Spring ORM module

	Chapter 6. Castor JDO - Support for the JPA specification
	6.1. JPA annotations - Motivation
	6.2. Prerequisites and outline
	6.3. Limitations and Basic Information
	6.3.1. persistence.xml
	6.3.2. JPA access type and the placing of JPA annotations
	6.3.3. Primary Keys
	6.3.4. Inheritance, mapped superclasses, etc.
	6.3.5. Relations

	6.4. An outline of JPA-Annotations
	6.5. Usage of JPA annotations - Configuration
	6.5.1. HOW-TO persist a single class (@Entity, @Table, @Id)
	6.5.2. HOW-TO persist a 1:1 relation (@OneToOne)
	6.5.3. Persist one to many relation (@OnetoMany)
	6.5.4. HOW-TO create and use a named query (@NamedQuery)
	6.5.5. HOW-TO create and use multiple named queries (@NamedQueries)
	6.5.6. HOW-TO create and use a named native query (@NamedNativeQuery)
	6.5.7. HOW-TO create and use multiple named native queries (@NamedNativeQueries)
	6.5.8. HOW-TO use persistence callbacks
	6.5.9. HOW-TO use @Enumerated
	6.5.10. HOW-TO use @Temporal
	6.5.11. HOW-TO use @Lob

	6.6. Integration with Spring ORM for Castor JDO
	6.6.1. A typical sample
	6.6.2. Adding a JDOClassDescriptorResolver configuration
	6.6.3. JPA Callbacks

	6.7. Castor JPA Extensions
	6.7.1. @Cache and @CacheProperty

	Chapter 7. DDL generator for Castor JDO
	7.1. Castor DDL Generator - An Introduction
	7.1.1. DDL Generator Options
	7.1.1.1. Command Line Options

	7.1.2. Database Engines

	7.2. Using the Ant task for the Castor DDL Generator
	7.2.1. Configuration
	7.2.2. Example

	7.3. Castor DDL Generator - Type Mapping
	7.3.1. JDBC Types not supported by Castor

	7.4. Castor DDL Generator - Properties
	7.4.1. Overview
	7.4.2. Global properties
	7.4.2.1. Supported database engines
	7.4.2.2. Grouping of DDL statements

	7.4.3. Specific properties
	7.4.3.1. Properties common for all database engines
	7.4.3.1.1. Key generators

	7.4.3.2. Properties for db2, hsql, Oracle, Postgresql and sapdb
	7.4.3.2.1. Trigger template

	7.4.3.3. Properties for MySQL only

	Chapter 8. XML code generation - Extensions
	8.1. XML code generation extensions - Motivation
	8.1.1. JDO extensions for the Castor XML code generator
	8.1.1.1. JDO extensions - Motivation
	8.1.1.2. Limitations
	8.1.1.3. Prerequisites
	8.1.1.3.1. Sample XML schemas
	8.1.1.3.2. Sample DDL statements

	8.1.1.4. Configuring the XML code generator
	8.1.1.5. The JDO annotations for XML schemas
	8.1.1.5.1. <table> element
	8.1.1.5.2. <column> element
	8.1.1.5.3. <one-to-one> element
	8.1.1.5.4. <one-to-many> element

	8.1.1.6. Using the generated (domain) classes with Castor JDO
	8.1.1.6.1. Empty mapping file
	8.1.1.6.2. Use of a JDOClassDescriptorResolver

	8.1.2. SOLRJ extensions for the Castor XML code generator
	8.1.2.1. SOLRJ extensions - Motivation
	8.1.2.2. Prerequisites
	8.1.2.2.1. Sample XML schemas

	8.1.2.3. The SOLRJ annotations for XML schemas
	8.1.2.3.1. <field> element

	8.1.2.4. Using the generated domain classes with SOLR

